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EXECUTIVE SUMMARY

The purpose of this report is to summarize the results of a three-year study in which

the main objective was to develop reliable algorithms for the detection of driver impairment

due to drowsiness. More specifically, the goal of the research was to develop the best

possible algorithms for detection of drowsiness, based on measures that could be computed

on-board in a vehicle. Additional objectives were that developed algorithms would produce

low false alarm rates, that there should be minimal encumbering of (interference with) the

driver, and that the algorithms should be-suitable for later field testing. This report describes

the various studies that were performed to develop, validate, and refine such algorithms.

Included are chapter summaries of the six preceding semi-annual research periods,

summaries of additional supplemental research, and remarks concerning future research in

regard to implementation of a full-scale driver-drowsiness detection and alerting system.

Because of the large amount of research and documentation generated during the three year

period, this report necessarily represents an overview. Ordinarily, this document would have

been called a final report. However, the project has been extended, Therefore, to avoid

confusion, this report is called a “Three-Year Report.”

This report is comprised of eight chapters. The first six correspond to summaries of

the six semi-annual research periods, as shown in Figure 1. The seventh chapter describes

three additional analyses performed late in the project that were directed at further refinement

of algorithms and gathering of additional information about their effectiveness. The eighth

chapter consists of a final summary of findings and recommendations. The remainder of this

executive summary provides a brief description of each chapter of this three-year report.

Chapter One (First Semi-Annual Research Period; Wierwille, Wreggit, and Mitchell, 1992)

This chapter contains a brief review of motor vehicle accident data bases for

characteristics of drowsy driver accident scenarios and a review of the drowsiness related

literature. There were three specific objectives in performing this review. The first was to

provide information about scenarios most likely to lead to drowsiness-related accidents. The
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second was to determine which operationally-obtainable measures are believed to covary

with the level of drowsiness, and the third was to determine how drowsiness level should be

defined. All of these information gathering tasks were directed at developing the best

experimental plan for drowsiness detection algorithm development.

pter Two (Second Semi-Annual Research Period; Wierwille and Ellsworth, 1992)

One of the findings of the literature review was that insufficient information existed

on defining the level of drowsiness of drivers in a practical way. Therefore, efforts were

directed toward the development of an operational definition based on ratings by informed

observers (persons familiar with the behavior of drowsy individuals). For this study,

informed observers were to rate the drowsiness level of drivers based on videotaped facial

images. Such videotapes already existed from previous experiments and could be used for

this preliminary definitional study. The experiment used six behaviorally trained raters

who received a “drowsiness definition” statement and a rating scale. After reading the

drowsiness definition statement they performed ratings of48 segments of drivers in various

stages of drowsiness.

Factors considered in the data analysis were test-retest reliability, inter-rater reliability,

intra-rater reliability and sensitivity. It was determined that agreement between raters and

within raters was quite good and reliability levels were quite high. Thus, observer rating or

averages of observer ratings can be used to define the level of drowsiness of drivers on a

minute-by-minute basis.

Chapter Three (Third Semi-Annual Research Period; Ellsworth, Wreggit, and Wierwille,

1993)

This study also focused on defining the level of drowsiness of drivers. While its main

purpose was the development of one or more additional definitional measures, it also allowed

the preliminary check of hardware needed for the detection algorithm development experiment

that was to follow.
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The fundamental concept of this study was to attempt to use a “blend” of eye-closure

and other physiological measures to predict performance in cognitive tasks. If such a blend

could predict performance under a variety of apparent drowsiness levels, then it could serve as

an alternative definition of drowsiness level.

Eight sleep deprived subjects performed two interleaved (non-driving) tasks, one being a

lower level cognitive task (simple visual search task), the other being a higher level cognitive

task (mental arithmetic). By exposing the subjects to these two tasks, it was possible to

determine performance decrements in both lower-level functions and higher-level functions.

All subjects had been awake for at least 17 hours before the experiment began.

Results of the experiment showed that a good definition of drowsiness level (as defined

by performance decrements on the tasks) could be obtained by combining eye closure,

electroencephalogram (EEG), and heart rate measures in a linear multiple regression model.

These measures would not be difficult to obtain in an automobile simulation since they can be

obtained without discomfort or intrusion. Therefore, a regression model could be used as an

alternate definition of drowsiness level.

Chapter Four (Fourth Semi-Annual Research Period; Wreggit, Kim, and Wierwille, 1993)

This study was directed at the central objective of the project, namely, at developing a

wide variety of usable algorithms for detection of driver drowsiness. The dependent measures

in this study were definitional measures of drowsiness that were not considered to be

operationally obtainable in an actual vehicle. The independent measures in this study were

operational measures that would be obtainable in an actual vehicle. The objective was to find

optimum combinations of independent measures that would best predict levels of drowsiness.

The independent measures collected during this study included driving-related

measures, driver-related measures (determined by Ellsworth, Wreggit, and Wierwille, 1993),

and secondary task performance measures. The various measures were used to create

algorithms for the detection of drowsiness while driving. The detection algorithms were

developed through the use of multiple regression analyses.
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The dependent measures collected during the study included two eyelid-closure

measures, the average observer rating developed by Wierwille and Ellsworth (1992), and an

operational definition of drowsiness developed by Ellsworth, Wreggit, and Wierwille (1993).

A measure that was comprised of the standardized sum of the above dependent measures was

also used as an operational definition of drowsiness.

Twelve sleep deprived subjects drove an automobile simulator from approximately

12:30 A.M. to 3:00 A.M. Four subjects performed a secondary task, four subjects

manipulated dash controls, and four subjects simply drove.

The secondary task (“A/O task”) consisted of a task that involved an auditory

presentation of simple words every fifteen seconds. If the presented word contained an “A” or

“O” the subject was to press the button labeled “YES” located on the steering wheel. If the

presented word did not include an “A” or “O” the subject was to press the button labeled “NO”

located on the steering wheel. This task demonstrated performance of low cognitive-load

tasks.

The task of manipulating various controls on the instrument panel involved following

auditory commands to adjust radio controls, push buttons, and vertical slide controls every

eight to ten minutes. The manipulation of the controls by some of the subjects was for the

reason of introducing factors that may be experienced by drivers on an actual roadway.

Performance measures, behavioral measures, and physiological measures were

collected and analyzed through the use of multiple regression-and discriminant analysis.

These measures consisted of the five dependent measures (definitions of drowsiness) and

thirty-three independent variables. Multiple regression analyses were undertaken to determine

which independent variables were significant predictors of drowsiness. Discriminant analyses

employed the sets of independent variables that were found through multiple regression to be

significant predictors of drowsiness. The results showed that multiple regression was as

accurate as discriminant analysis in classifying levels of drowsiness. Since multiple

regression analysis does have some inherent advantages over discriminant analysis when
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dealing with detection algorithm development and use, it was decided that all algorithms

would be developed using multiple regression techniques. Analyses were then undertaken to

determine which independent variables were significant predictors of drowsiness.

Typical algorithms contained four to seven measures and corresponding coefficients

(weightings). A typical good algorithm consisting of steering-related, lateral accelerometer-

related, and lane-related measures produced an R value of 0.87. (See Figure A8, Appendix

A.) The R value indicates the correlation between the actual drowsiness measure and the

algorithm output (predicted measure). An accuracy rate of 79% was attained when all

misclassifications were considered (i.e. observed alert, questionable, and drowsy segments

being classified in any erroneous category) and a 98% accuracy rate was attained when only

large misclassifications were considered (i.e. observed alert segment being erroneously

classified as drowsy or vice versa). Thus, large misclassification error rates of 2% to 3% are

likely to occur. Classification accuracy rates attained during the algorithm development study 

and subsequent algorithm validation study reflect accuracy rates for algorithms when applied

to partially sleep deprived driver-subjects. It is believed that false alarm rates would be lower

for alert drivers because, if the level of actual drowsiness is very low (drivers are alert), the

detection-algorithm output will not (in a great majority of cases) erroneously exceed the

predetermined “impairment threshold.” In other words, the actual level of drowsiness in an

alert driver will be so far from threshold that it is unlikely that a misclassification would

occur.

To further minimize false alarms, a two-stage detection system could be used. The

first stage would detect probable drowsiness based on driver and vehicle related measures, and

the second stage would further discriminate using a secondary task.

Chapter Five (Fifth Semi-Annual Research-Period; Wreggit, Kim, and Wierwille, 1994)

This experiment was conducted with the primary purpose of algorithm validation, that

is, determining algorithm classification accuracy for data from a new set of driver-subjects.

While estimates of algorithm accuracy were obtained along with the algorithms when they
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were developed, it was not certain that such estimates could be relied upon for new groups of

drivers operating under similar conditions. Therefore, it was deemed necessary to apply

typical developed algorithms to a new data set for the purpose of obtaining a “validated”

estimate of accuracy.

In this experiment, twelve driver-subjects drove the moving-base, computer-controlled

simulator at Virginia Tech while measures used in the previously derived algorithms were

gathered. Subjects were kept awake until approximately 12:15 A.M. when they were placed

in the simulator. They drove the simulator until about 3:00 A.M.

The conditions used in this experiment were similar but not identical to those of the

algorithm development (earlier) experiment. The reasons for using a slightly modified design

in the validation experiment were:

1. to determine algorithm accuracy under similar, but not identical conditions, thereby

“simulating” the likely conditions of an application, and

2. to use the data for additional purposes, such as determining the effects of cruise

control on algorithm detection accuracy.

Typical previously-developed algorithms were selected and then tested for detection

accuracy on the measures. The accuracy analysis was divided into two major categories. The

first category was for algorithms based solely on driver-vehicle performance measures, and

the second was for algorithms including A/O task performance measures. The second

category contained half the data of the first category since subjects performed the A/O task

only in two of the four quartiles during the data collection run.

The results of the driver-vehicle performance category showed that on the average there

was no appreciable degradation in algorithm accuracy when the algorithms were applied to the

new data. Error classification matrices similarly showed no degradation. When the various

quartiles were compared, it was found that some minor variations in algorithm accuracy did

occur.
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The results of the A/O task performance category showed that there was a reduction in

algorithm accuracy, as evidenced by R values, when the algorithms were applied to the new

data. On the average, R values were reduced from 0.81 to 0.61. Surprisingly, however,

classification matrices did not exhibit a corresponding reduction in accuracy. In other words,

the ability of the algorithms to classify correctly remained reasonably high.

The results of the validation study make it possible to draw several important

conclusions about drowsy driver detection. They are as follows:

l There was no degradation in detection accuracy for previously developed driver-
vehicle-performance algorithms when they were applied to new data.

+ Both R values and classification matrix accuracies maintained their values.

+ The use of twelve representative subjects is therefore probably sufficient to
characterize algorithms for general use.

l There was a degradation in R values for previously developed algorithms that
included A/O (secondary) task measures, when the algorithms were applied to new
data. The drop in value averaged 0.2. However; classification matrices did not
exhibit a correspondingly large decrease in accuracy. Instead, their reduction in
accuracy was small.

+ The reduction in R values is probably a result of using only four subjects to
develop the algorithms, or possibly a result of the limited number of bouts of
drowsiness in the new data.

+ R values for validation results may underestimate the capabilities of algorithms
to classify correctly, when a small subject sample is used to develop the
algorithms.

l This experiment has shown that appreciable losses in accuracy do not occur when
appropriately-developed drowsy-driver detection algorithms are applied to similar
new data. Therefore, the algorithms retain their ability to detect drowsiness.

l Any future algorithm development work should be based on twelve or more
representative subjects, and both R values and classification matrices should be
evaluated.

l The results of this experiment generally support the feasibility of drowsy-driver
detection.
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Chapter Six (Sixth Semi-Annual Research Period; Kim, Wreggit, and Wierwille, 1994)

This study employed the same set of data collected during the validation phase of the main

study. As indicated previously, the validation study was planned in such a way that additional

analyses could be conducted. Three additional issues were examined using this set of data, including:

1) an analysis of how forward-velocity measures covaried with level of drowsiness, and whether or

not they could be used to improve algorithm detection accuracy, 2) an investigation of whether the

performance of a secondary-task had an alerting effect on drivers and, 3) determination of whether or

not cruise-control increased levels of driver drowsiness.

Use of Forward velocity-related measures. Velocity-related measures were used from the

non-cruise control segments of each driver’s data run. The results of correlations between these

measures and the five definitional measures of drowsiness gave an indication of the relationship

between longitudinal measures and drowsiness. Results suggest that the relationship between

velocity-related measures and drowsiness is moderately strong only when drivers are not stimulated

by a secondary task. In other words, under the dullest of driving conditions, there is a moderately

strong relationship. Otherwise, the relationship is weak.

To determine whether velocity-related measures contributed significantly to algorithm

detection accuracy, algorithms were developed both with and without velocity-related measures so

that direct comparisons could be made. Results showed that velocity-related measures contributed

only minimally. Similarly, error classification matrices showed only the slightest improvements when

velocity-related measures were included in the algorithms. It must thus be concluded that velocity-

related measures do not provide a substantial increase in drowsiness detection accuracy.

Effects of Cruise Control, Secondary Task, and Velocity-Related Measures on Driver

control. Results suggest that there is no strong alerting effect of the A/O task on level of drowsiness,

and similarly, there is no strong drowsiness inducing effect of cruise control usage



on level of drowsiness. Although not conclusively demonstrated by the present experiment,

there are indications that the very dullest of conditions (no A/O task and cruise engaged)

caused increases in drowsiness level and decreases in lane-keeping performance. If this

hypothesis is indeed correct, then stimulating the driver by any means should be helpful to a

degree in maintaining alertness.
.ter Seven, Part One (Fairbanks and Wierwille, 1994)

This study focused on the effects of using higher-order (non-linear) algorithms on

drowsy-driver detection accuracy. Measures from the development phase (Wreggit, Kim, and

Wierwille, 1993) and validation phase (Wreggit, Kirn, and Wierwille, 1994) were squared or

multiplied with each other to obtain cross products. The second order terms, combined with

first order terms, were used to calculate predictive algorithms using data from the

development phase. The developed algorithms were then applied to the validation data.

The results of this study suggest that the use of second-order terms in driver-

drowsiness-detection algorithms does not result in detection accuracy improvement. Although

not conclusively proven by the present study, the results do support the hypothesis that higher-

order algorithms produce more and larger outliers when applied to new data than do linear

algorithms. When outliers resulting from algorithm outputs (predictions) were limited to the

maximum and minimum values of the observed scores (in other words, the outliers were

“clipped” from the data and set to a value equal to the largest and smallest observed data) the

R values increased on average from 0.612 to 0.800.

Chapter Seven: Part Two (Wreggit and Wierwille, 1994a)

Various A/O task algorithms were developed and validated in previous phases of this

study (Wreggit, Kim, and Wierwille, 1993 and Wreggit, Kim, and Wierwille, 1994). It was

found that the R values in the validation phase (using new A/O data) were significantly lower

than the R values obtained in the development phase (using original A/O data). When the

results of the Fairbanks and Wierwille (1994) study became available, it was felt that the

significant decrease in R values from the development phase (using A/O data) to the
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validation phase (using A/O data) in the main study could have been due to the effects of

prediction outliers.

The purpose of this follow-up study was to examine the possibility of potential

improvement in multiple-R values by limiting the output (prediction) values obtained from

previously developed and validated A/O task algorithms. The algorithm output values were

limited to the minimum and maximum values of the corresponding observed data. Thus, no

outliers were present when the subsequent correlation analyses were run. A comparison of R

‘values obtained from analyses of original data (main study: development phase), new data

(main study: validation phase), and “clipped” data were examined.

The outliers present in the prediction data were very limited in number and in

magnitude. It was concluded from the results of this study that the significant decrease in A/O

task algorithm R values in the validation phase was not a result of outliers. Instead, it is most

likely that the use of only four subjects in A/O task algorithm development limited the

prediction capabilities somewhat.

Chapter Seven: Part Three (Wreggit and Wierwille,  1994b)

In developing and validating algorithms for drowsiness detection, drivers were

purposely subjected to partial sleep deprivation and driving in the early morning hours. False

alarm rates obtained would thus reflect those corresponding to such drivers, and not drivers

who are fully alert. Therefore an additional analysis was performed to assess the alert-driver

false-alarm rate. To accomplish this task, data from the algorithm development phase were

screened for segments in which drivers were fully alert (that is, alert based on the definitional

measures). These segments were extracted and then new R values and classification matrices

were computed (for the extracted data). The results showed large decreases in R values and

large improvements in classification accuracy.

It was concluded that if drivers are fully alert, 1) R values will not accurately reflect

the detection capability of a given algorithm, and 2) there will be substantially fewer false

alarms than earlier classification matrices would indicate.
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ter Eight

This chapter includes a summary of findings and recommendations for future

research. The reader is referred directly to this chapter for a summary.

This appendix contains regression summaries and classification matrices for selected

algorithms. The coeffkients (B-values) in the regression summaries specify the weighting

that should be used when algorithms are employed in an application.
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Chapter One

Literature Review

(This chapter is based on material drawn from the First Semiannual Research

Report, dated April 10, 1992 and referred to as Wierwille Wreggit, and

Mitchell, 1992. The material presented here has been updated based on recent

findings in the literature)
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INTRODUCTION

This chapter contains 1) a brief review of motor vehicle accident data bases for

characteristics of drowsy driver accident scenarios and 2) a review of the drowsiness related

literature.

The purpose of examining accident data bases was to provide information about

scenarios most likely to lead to drowsiness-related accidents. The purpose of reviewing a

wide variety of literature pertaining to past driver-drowsiness and general-drowsiness

research was to determine 1) which operationally-obtainable measures are believed to covary

with the level of drowsiness and 2) how drowsiness level should be operationally defined.

These information gathering tasks were directed at developing the best experimental plan for

drowsiness detection algorithm development.



ACCIDENT SCENARIOS

One of the leading causes of single- and multiple-car accidents is driver impairment

due to drowsiness (Office of Crash Avoidance Research, 1991). Unfortunately, drowsiness

while driving may be perceived as less of a problem than it actually is because of the difficulty

of attributing drowsiness as a cause of an accident. However, as more research is being

conducted concerning drowsy drivers, it is becoming indisputable that a major problem does

exist. Also, there may be many more incidents in which the initial cause of the loss of control

of a vehicle is drowsiness yet is reported to be caused by something other than drowsiness.

A study conducted in 1973 at Duke University by Tilley, Erwin, and Gianmrco

provides evidence that drowsiness while driving is an all too common occurrence. In this

study two experimenters, stationed in the Durham, North Carolina Department of Motor

Vehicles, administered questionnaires pertaining to driving habits and behaviors to 1500

individuals who were successful in renewing their driver’s license. Of those 1500 people,

64% responded that they had, at one time or another, become drowsy while driving. Also,

over 7% responded that they had gone to sleep for short periods while driving. Of those who

answered that they had had trouble with drowsiness while driving, 3 1.2% responded that they

had become drowsy before they were aware of their condition. Of those who did experience

drowsiness while driving, approximately 10% reported that they had been in one or more

accidents due to drowsiness or falling asleep at the wheel. Another 10% responded that they

had been in a near accident due to drowsiness.

A survey completed in 1980 by the Kanagawa Prefectural Police, based on

questionnaires collected near the Tokyo-Nagoya Expressway, shows that approximately 75%

of the drivers admitted to being sleepy while driving (Seko, 1984). Unfortunately, Seko does

not give an indication in his article concerning the extent of the drowsiness experienced by the

polled drivers. Seko also cites a survey of the causes of accidents on the Tokyo-Nagoya

Expressway since 1969. He found that most of the rear-end collisions at night were

attributable to drowsiness. A survey cited by Seko (1984) which was carried out by the
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Shizuoko Prefectural Police states that in 1973 nine percent of all traffic accidents were

caused by drowsiness and 45% of all deaths were due to drowsiness. Planque, Chaput, Petit,

Tarriere, and Chabanon (1991) report that fatigue is the cause of 26% of the fatal accidents

occurring on the highways in France.

A recent NHTSA Research Note (Knipling and Wang, 1994) summarized available

national statistics for the years 1989-93 based on General Estimates System (GES) data

representative of all crashes and Fatal Accident Reporting System (FARS) statistics on fatal

crashes. A summary of their findings is as follows:

l There were an average of 56,000 police-reported crashes in which driver drowsiness/fatigue
was cited (0.9 percent of all crashes).

. An annual average of 1,542 fatalities were associated with these crashes (3.6 percent of all
fatalities).

.  These crashes resulted in an estimated 40,000 non-fatal injuries (all non-fatal severity
levels).

l Due to underreporting, all of the above statistics are regarded as conservative.

Statistics on crash characteristics of “drowsiness-cited” cases indicated the following:

l Drowsy driver crashes peak in the early a.m. hours with a second smaller peak in the
afternoon. Fifty five (55) percent occurred between midnight and 7:59am, and another 18
percent occurred between 1:00 and 4:59am.

l Most occurred in non-urban areas, generally on roadways with 55-65 mph speed limits.

l Eighty (80) percent were single-vehicle crashes or collisions- with parked vehicles. An
additional 6.6 percent were subject vehicle-striking rear-end crashes.

l In 76 percent of crashes the driver was the only occupant of the subject vehicle.

l Fifteen (15) percent of drowsiness/fatigue, crashes also involve alcohol.

l Involvement is strongly related to both driver sex and driver age. For the 1989-93 period,
76 percent of subject drivers were male, and 59 percent were under the age of 30.

l In addition to young male drivers, commercial (i.e. long-haul truck) drivers are at risk,
primarily due to their high mileage exposure.
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REVIEW OF THE DROWSINESS LITERATURE

.

This section examines previous studies that have focused on physiological measures,

driver-performance measures, and behavioral measures. The overall purpose of this section

is to present those operational indicators or drowsiness which have shown promise in

detecting driver drowsiness and are either currently obtainable or may soon be obtainable on-

the-road. This information will be used to formulate a set of measures which should be

incorporated into the simulator testing and the development of the detection algorithms.

Many measures have been examined as predictors of driver impairment and can be

divided into two basic categories: objective measures and subjective measures. In general,

objective measures have demonstrated greater promise as predictors of driver impairment

than subjective measures (Dingus, Hardee, and Wierwille, 1985). A subclassification exists

within this objective measure category and is comprised of physiological measures and

performance measures. In large part, performance measures have shown potential both in

terms of driver impairment prediction, as well as practicality for on-the-road implementation

(Dingus  et al., 1985). Conversely, physiological measures typically cannot be obtained on-

the-road in a manner that is feasible but are of interest since they can be predictive in nature

concerning the onset of drowsiness.

A study conducted in 1984 by Skipper, Wierwille, and Hardee found results that

indicated that it was possible to detect the onset of driver drowsiness by observing drivers’

reactions to steering wheel torque and front wheel disturbances produced by the automobile

simulator. However, while subjects were involved in a normal driving scenario the

experimenters found that it was also possible to predict the onset of drowsiness. Several

variables were examined, but eyelid closure was the most consequential.

Dingus, Hardee, and Wierwille (1985) performed a study that examined the effects of

drowsiness on driver performance. Dingus, et al. employed both sleep deprived subjects and

a control group consisting of the same subjects in a rested condition. The sleep-deprived

runs took place from 2:00 a.m. to 3:30 a.m. The initial analyses of the collected data were

5



correlation analyses between the eyelid closure measures and lane position measures. The

lane position measures were indicators of driver impairment while the eyelid closure

measures were indicators of drowsiness. Eyelid closure was recommended by Erwin (1976)

since it has been found that eyelid closure is a very stable physiological indicator of

drowsiness. It was found that a relatively high correlation between eyelid and lane position

measures was present, as seen in Table 1.

Dingus et al. (1985) ran a second set of correlation analyses between the indicators of

driver impairment, which included eyelid closure and lane position measures, and other

dependent measures. Dingus et al. state that any measure that demonstrated reasonably

consistent correlations across the impairment indicators of approximately 0.25 or greater was

considered promising. The potentially reliable impairment detectors based on correlation

analyses run by Dingus et al. concerning drowsiness can be seen in Table 2. Table 3 shows

drowsiness impairment indicators and associated classification matrix for six-minute interval

data from the Dingus et al. study. The six-minute interval data were found to provide slightly

better discrimination of drowsiness-induced impairment.

It was found through stepwise  discriminant analyses that YAWMEAN, YAWVAR,

STEXEED, SEATMOV, and LANDEVSQ contained significant independent detection

information. By employing eyelid closure as a definition of drowsiness it was possible for

Dingus et al. to create several models of driver impairment based upon driving performance.

This was an important development since the performance measures could be unobtrusively

implemented using an in-car drowsiness detection system. Performance measures will be

discussed in more detail in the Driving Performance Measures section of this chapter.

In the study conducted by Dingus, Hardee, and Wierwille (1985), EYEMEAS seems

to be affected by degree of sleep deprivation as well as time on task. However, when

compared to EYEMEAS data found in the Hardee, Dingus,  and Wierwille (1985) study it

becomes apparent that time on task may be as important as the degree of sleep deprivation.
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Table 1: Eye Measure vs. Lane Measure Correlations. (From Dingus, Hardee and

Wierwille, 1985)

LANEX
LANEDEVV
LANEDEVSQ
LANEDEV4

EYEMEAN EYEMEAS PERCLOS
.47 .54 .62
.50 .55 .60
.55 .59 .60
.36 .40 .40

l EYEMEAN: Mean eyelid closure (zero = wide open)

l   EYEMEAS: The mean-square percentage of the eyelid closure signal.

.  PERCLOS: Proportion of time that the eyes are 80% to 100% closed.

.  LANEX: Count of the number of samples taken while the simulated vehicle was

out of the lane.

l   LANEDEVV:   Lane position variance. 

l LANEDEVSQ:  Weighted lane deviation. Heavier weighting away from the center of the

lane by a squared function.

l LANEDEV4: Heavily weighted lane deviation. Heavier weighting away from the

center of the lane by a fourth power function,



Table 2: Impairment Detectors Based on Correlation Analysis (From Dingus,  Hardee and

Wierwille, 1985)

l YAWVAR:

l STEXEED:

. STVELVAR:

l LGREV:

. SEATMOV:

. HRTRTM:

. HRTRTV:

YAW-VAR
STEXEED
STVELVAR
LGREV
SEATMOV
HRTRTM
HRTRTV

Yaw deviation variance.

Count of steering velocity occurrences over 150 degrees per second.

Steering velocity variance.

The number of times the steering wheel position increment exceeds 5

degrees (after steering wheel velocity passed through zero).

Seat movement counter.

Heart rate mean.

Heart rate variance.



Table 3: Drowsiness Impairment discriminant Analysis. Six-Minute Interval Data -- Best

Results (From Dingus,  Hardee and Wierwille, 1985)

Predicted

Actual

Impaired

Impaired

20

Not Impaired

8
(28.57%)

28

Not Impaired                  
4

(2.63%) 148 152

24 156 180

Model Variables:
YAWVAR .7692
SEATMOV .6218
LANDEVSQ .4152
YAWMEAN .2460
STEXEED -.0292

APER = 6.7%
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In Figure 2 a comparison of the EYEMEAS data from both studies with starting times

aligned is presented.

es of Sleep

To understand the terminology concerning drowsiness and sleep a discussion of the

stages of wakefulness will be presented. An understanding of the various stages of sleep is

important when carrying out studies that examine the physiology, psychology, or behavior of

sleep deprived subjects. It should be noted however, that while driving an automobile, a

person will most likely be at one of two stages of wakefulness -- either stage W or stage 1

sleep. Below is a summary explanation of the various stages of sleep. The descriptions of

the stages is taken, in part, from Carskadon (1980).

0 Stage W sleep. Stage W does not actually describe a sleep state but rather a state of

wakefulness. This stage is usually accompanied by a relatively high tonic EMG.

Rapid eye movements and eye blinks are present in this stage.

l Stage 1 sleep. This is the stage that intervenes between wakefulness and other sleep

stages. In most subjects, the duration of stage 1 sleep usually is not longer than

several minutes. Stage 1 sleep may occur after large movements of the body which

are caused by the relaxation of the muscles in the body of a person. entering this stage

of wakefulness. Stage 1 sleep following wakefulness is often accompanied by slow

eye movements. Each slow eye movement may be several seconds in duration.

Rapid eye movements are absent at this stage. Tonic EMG levels are commonly

below EMG signals of individuals in a relaxed but wakeful state.

. Stage 2 sleep. No eye movements are usually seen in stage 2 sleep. Stage 2 sleep can

last as long as one hour and become interspersed with periods of REM sleep.
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Dingus, Hardee, and Wierwille (1985)

2AM 2:30 3:00 3:300 AM

4200 10200 12000

Hardee, Dingus, and Wierwille (1985)

M i d n i g h t  12:30 1 :00 1:30 2:00 2:30 AM

(Not Avail.) 12900 16000 19500 21400
30 60 90 120 150
min min min min min

DRIVING TIME

Figure 2: Comparison of EYEMEAS Values for Two-Experiments with Start-Times

Aligned.
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l Stage 3 sleep. Stage 3 sleep is a transitional stage between stage 2 and stage 4 sleep

early in the night. Sometimes stage 3 sleep will not be followed by stage 4 if it occurs

in the NREM portion of the sleep cycle.

. Stage 4 sleep. Stage 4 sleep usually occurs during the first third of the night. This

stage is characterized by a predominance of high amplitude slow brain waves.

l REM sleep. This stage usually occurs within the first 100 minutes after sleep onset.

REM sleep is characterized by low voltage, mixed frequency EEG, bursts of rapid eye

movement (REM) and low amplitude EMG.

The purpose of this section is to discuss measures that may lead to a more refined,

operational definition of drowsiness and the onset of stage 1 sleep or drowsiness. A review

of the sleep and drowsiness literature has been conducted and the most likely measures to be

. successfully employed in the refinement of the operational definition of drowsiness, that may

eventually aid in the detection of the onset of drowsiness in various applications, are

discussed below.

Eyelid closure. Eyelid closure has been found to be a very reliable predictor of the

onset of sleep (Erwin, 1976) and degraded task performance (Dingus,  Hardee, and Wierwille,

1985; Hardee, Dingus,  and Wierwille. 1985; Skipper, Wierwille, and Hardee, 1984). Erwin

examined various measures to determine whether they were predictive of sleep onset,

including plethysmography, respiration rate, electroencephalography (EEG), skin electrical

characteristics, electromyography (EMG), heart rate variability, and eyeiid closure. It was

found that eyelid closure was the most reliable predictor of the onset of sleep among the

dependent measures examined. Eyelid closure is indicative of sleep onset and undoubtedly

the cause of poor performance in visual tasks, especially tracking tasks such as driving. It
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seems quite obvious that if a driver’s eyelids are closed, the ability to operate a vehicle would

be greatly hampered.

Skipper, Wierwille, and Hardee (1984) examined the ability of sleep deprived drivers

to perform a one and one half hour driving task. Various disturbances were purposely input

into the steering system of the driving simulator to mimic on-the-road conditions. It was

found that performance measures such as lane deviation, yaw deviation, and steering velocity

were highly correlated with eyelid closures.

The apparatus used to capture eyelid closures in the Dingus et al, Hardee et al., and

Skipper et al. studies was a low-light level camera. A linear potentiometer was used by an

experimenter to track the eyelid movement of the subjects manually.

Eye movement. There are two general reasons that one may desire to record eye

movements during sleep or before sleep. First, a principal sign of REM sleep is the phasic

burst of rapid eye movements. Second, the onset of sleep in most subjects is heralded by or

accompanied by slow, rolling eye movements (Carskadon, 1980).

Slow, rolling eye movements may accompany the onset of sleep or are precursors of

sleep onset. This phenomenon also occurs with the transition to stage 1 sleep during the

night. The characteristics of human eye movements change greatly with alertness level.

Slow eye movements (SEMs) prove to be one of the most characteristic signs of the phase of

transition between wakefulness and sleep (Planque, Chaput, Petit, and Tarriere, 1991).

Dement (1975) states that the SEM event is a crucial occurrence in the sleep onset process.

Slow, lateral eye movements are quite different than eye movements typically seen in

a person who is fully awake. A completely awake individual can be observed as having

quick eye movements. As subjects become drowsy their eyes move in a pendular motion

from left to right (Hiroshige, and Niyata, 1990) and the number of quick, voluntary

movements of the eyes begins to lessen. Endo, Inomata, and Sugiyama (1978) found that

attentiveness begins to disappear in conjunction with drowsiness due to the lessened number

of lateral voluntary eye movements that would normally be used in a driving situation to
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check the rear view mirrors, side windows, etc. In other words, as alertness decreases,

attentiveness also decreases. Numerous SEMs are detected during stage 1 sleep, but they also

appear during the long period separating waking from sleep (Hiroshige, and Niyata, 1990).

Torsvall and Akerstedt (1988) noted that the proportion of SEMs increased sharply with the

advent of drowsiness on train drivers making long trips. Convergence of the eyes is also

possible when a person becomes drowsy.

,

Electrooculography (EOG) involves the measuring of eye movements via electrodes

in contact with the skin surrounding the eyes. The process of measuring eye movements with

EOG is quite simple due to the electrical nature of the human body. In the eyeball, there is a

small electropotential difference from the front to the back. The front (cornea) of the eye is

positive with respect to the back (retina) of the eye.

Before a certain point in a person’s awake but drowsy state, SEMs do not exist.

However, after a particular moment in the onset of sleep, slow, rolling, lateral, ocular

movements create sinusoidal activity in the EOG (Dement, 1975). On the EOG signal, the

SEMs are translated by slow deflections lasting more than a second. It is likely that

amplitudes of at least 100 microvolts will be seen (Torsvall and Akerstedt, 1988). The EOG

waves that are normally observed are moderate in amplitude initially, but increase with the

degree of drowsiness (Santamaria and Chiappa, 1987).

Planque et al. (1991) found that after several minutes of driving only blinking and

glances at simulator instrumentation were recorded. Approximately 30 minutes into the

study deterioration of deliberate eye movement was seen. Planque et al. state that by

analyzing the EOG, it is possible to follow clearly the deterioration of alertness.

Muscle activity. Sleep onset may be accompanied by the reduction of muscle

activity, or muscle tonicity, especially in the facial muscles. However, Erwin (1976) states

that measures of muscle activity offer essentially no predictive information pertaining to

sleep onset and that significant sleep can occur for several minutes prior to any significant

change in muscle tone. Unfortunately, it is not clear as to which muscle groups he examined.
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A study conducted by Yabuta, Iizuka, Yanagishima, Kataoka, and Seno (1985)

demonstrates that facial expression is effected by drowsiness. Yabuta et al. state that special

attention was focused on subjects’ facial expression, among other physiological measures,

because facial expression is known to vary according to the alertness level of the subject.

Observing the muscle activity which causes the changes in facial expression with drowsiness

is one method of quantifying this measure.

Electromyography (EMG) is a common method used for recording muscle activity.

Often times, EMGs are used to evaluate various sleep and muscle disorders. EMG measures

of facial muscles may be an efficient method of quantifying facial expression, or more

specifically, facial muscle tone.

Hauri (1982) demonstrates that EMG recorded on the chin steadily, though not

dramatically, decrease as a person nears stage 1 sleep. Even when a subject is totally relaxed,

small muscle potentials will be seen (Carskadon, 1980). This is due to the fact that every

muscle is composed of many contractile fibers that are innervated by nerves. When a muscle

fiber is activated through nerve innervation, a change in the electrical potential is seen. When

the muscle is relaxed, fewer nerves discharge, thus a smaller EMG potential is recorded.

Brain wave activity. Sleep produces distinctive alterations in the amplitude and

frequency of the signals from the brain. Erwin (1976) states that there is no reliable

alteration in background brain activity prior to eyelid closure. Upon eyelid closure Erwin

found that a very rapid shift in brain wave patterns takes place. This shift is identifiable as

stage 1 sleep. However, Planque et al. (1991) states that sharp changes in the frequency

content of brain wave activity are observed during the crossing from alertness to a stage of

hypoalertness. then to drowsiness, and finally to sleep. A slowdown of the cerebral activity,

in general, an increase in the percentage of alpha waves and, in turn, a decrease in the

percentage of beta waves, is observed at the same time that a decline in performance is seen.

Seko (1984) reports that alpha waves appear during decreased alertness such as

absentmindedness or “cloudy consciousness.” Seko cites the work of Kuroki, Kitakawa, and
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Oe (1974) wherein alpha waves were hardly detected at the beginning of a driving session but

as the driving session continued and the level of driver/subject alertness decreased, high-

amplitude alpha waves occurred frequently. Planque et al. (199 1) suggest that analysis of the

beta, alpha, and theta frequencies are the most appropriate for examining/detecting the onset

of sleep.

Planque et al. state that automatic processing of the EEG signal has proved very

difficult to implement. Presently, various phases of sleep (stage 1, stage 2, REM, etc.) are

identifiable via automated methods, however an examination of drowsiness and sleep onset is

distinguished by much less distinctive physiological events. Therefore, Planque et al. suggest

the manual method for analysis of EEG as well as EOG which was discussed previously.

potential level. The SPL measures the potential difference between the

outermost layer of skin (stratum corneum) and the layer immediately below it (stratum .

lucidurn). In a study by Erwin, Hartwell, Volow, and Alberti  (1976) it was found that a

correlation exists between changes in skin potential level (SPL) and stages of arousal. In all

cases, EEG-defined-sleep occurred only after a shift in skin potential level (Erwin et al.,

1976). It was also found that significant shifts in skin potential level preceded not only stage

1 sleep but also the transition that occurs prior to stage 1 sleep. In the several minutes

following the SPL shift, subjects oftentimes became drowsy as evidenced by decreased

performance, frequent eyelid closures of more than one second, and occasionally, EEG

manifestations of sleep (Erwin, 1976). Although decreased skin potential negativity was

shown to be a prerequisite of sleep onset, decreased potential values preceding sleep onset

varied in lengths of time. This fact may indicate that SPL is by no means the only

deterministic factor of arousal level (Erwin et al., 1976).

Erwin et al. (1976) discounted the hypothesis that electrodermal shifts are simply a

function of time from initial arousal. This was done by observing that spontaneous and

evoked EEG arousal was accompanied by a return to waking skin potential levels.



Some obstacles do exist, however, when it comes to applying SPL as a measure of

drowsiness. First, recordings of some subjects may give indications of shift changes in SPL

without showing drowsy behavior or sleep onset and with no performance decrements seen.

As stated earlier, in all cases, EEG-defined sleep occurred only after a shift in skin potential

level. From this, it can be hypothesized that SPL shifts must occur for a person to drift into

sleep although a shift in SPL is not always followed by sleep onset. Second, there is a

considerable variation in baseline values of SPL. This variation can be seen between and

within subjects. SPL is susceptible to alterations in subjects’ mood, activity level, and

temperature.

Heart rate variability. Heart beat interval variability has been found to correlate with

drivers’ fatigue level (Wierwille and Muto, 1981). As cited in the literature by Wierwille et

al., (198 1) Sugarman and Cozad (1972) and Riemersma, Sanders, Widervanck, and Gaillard

(1977) found, even greater amounts of variability in heart rate with fatigue. On the other

hand, Volow and Erwin (1973) found no correlation between heart rate variability and sleep

onset. However, Volow states that in real (or simulated) driving situations there may be

sufficient motoric demands on the driver such that the interaction of driving activity may

produce significant variations.

Pupil aperture size variability. The pupil serves as a window into central nervous

system activity. Spontaneous pupillary movement in darkness in the normal awake

individual has been described as reflecting “tiredness,” “fatigue,” and “sleepiness”

(Lowenstein and Loewenfeld, 1963; Lowenstein and Loewenfeld, 1964). The state of the

autonomic nervous system has been thought to reflect fatigue and wakefulness for quite

some time. For instance, over 200 years ago, pupillary constriction was believed to be

associated with sleep (Fontana, 1765). Marked changes in pupillary stability and extent of

oscillations have been consistently shown to occur in normal “tired” subjects (Lowenstein

and Loewenfeld, 1951; Lowenstein and Loewenfeld, 1963; Lowenstein and Loewenfeld,

1964). Pupillary behavior in individuals suggests that the actions of the pupil do reflect
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autonomic events and that it is consequently an indirect but accurate indicator of sleepiness or arousal

level.

Secondary Task Measures

A study was conducted by Hardee, Dingus, and Wierwille (1985) which employed secondary

tasks in a simulator study using sleep deprived subjects. This experiment was run starting at 12:00 a.m.

instead of 2:00 a.m. as in the Dingus, Hardee, and Wierwille (1985) study. Hardee et al. found that

auditory or visual secondary tasks, along with heart rate variability, predicted quite well whether a

subject was impaired or unimpaired due to drowsiness. However, it was found that secondary tasks did

not keep the subjects from becoming drowsy.

Subjective Ratings

Observer ratings. Most of the studies that have been carried out rely on the subjective

evaluation of drowsiness by the subjects themselves. One study that does, investigate observer rating of

drowsiness was carried out by Carroll, Blisewise, and Dement (1989). The results of this study show a

high interrater reliability for observations of the sleep-wake cycle of 39 nursing home residents.

Driving Performance Measures as Indicators of Driver Drowsiness

Driving performance measures that can be used to predict the onset of drowsiness are

important since it has been shown that sleep loss produces decrements in driving skills (Hulbert, 1972).

Driving performance measures include lane-related measures, steering-related measures, and heading-

and lateral acceleration-related measures. These measures are obviously important since drivers must

maintain proper lane position to avoid vehicles in nearby lanes and objects located on the side of the

roadway. The purpose of this section is to discuss various measures used in the past to evaluate driver

drowsiness while a subject is actually behind the wheel of an automobile (either simulated or on the

road). Measures of performance have potential for driver impairment prediction and are, in some cases,

relatively easy to install in an on-the-road vehicle. An overview of performance measures as



. LANEDEVM: Lane deviations which were heavily weighted for lane exceedences were

found to be highly correlated with eye closure and were influenced by

sleep deprivation and time on task (Skipper, Wierwille, and Hardee, 1984).

. LANESTD: The standard deviation of the lane’position was found to be highly

correlated with eye closure and was influenced by sleep deprivation and

time on task (Skipper, Wierwille, and Hardee, 1984).

. LANEDEV: the global maximum lane deviation was found to be highly correlated with

eye closure and was influenced by sleep deprivation and time on task

(Skipper, Wierwille, and Hardee, 1984).

.  LANEDEVSQ: The mean square of the lane deviation has been found to contain a

significant amount of independent information. The measure is

considered to be an accurate and reliable measure for the detection of

drowsiness (Dingus, Hardee, and Wierwille, 1985).

indicators of driver drowsiness has been addressed by Wierwille, Wreggit, and Mitchell

(1992) and will be presented, in summary, below.

Lane-related measures. Several studies have found lateral control measures to be

closely related to prolonged driving. Dureman and Boden (1972) found that lane tracking

ability degrades as time on task increases over a four-hour period. Several other researchers

(Mast, Jones, and Heimstra, 1966; Sussman, Sugarman, and Knight, 197 1) found similar

results in that lane position errors increased over a four-hour period. Several lane-related

measures have been found to be accurate and reliable measures for the detection of

drowsiness, all of which are feasible for on-the-road use. The names of the measures

described below are simply the variable names used in previous studies.
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. LATPOSM: The mean square of the high pass lateral position (heavily weighted for

rapid changes in lateral position) shows potential as a drowsiness indicator

(Dingus,  Hardee, and Wierwille, 1985).

Steering-related measures. The frequency and type of steering reversal is related to

lane tracking. This relation is seen since drivers who are impaired due to drowsiness are

typically inattentive to the driving task. As a result, the number of “micro-wheel

adjustments” may decrease. Ryder, Malin, and Kinsley (198 1) found that steering reversals

decreased in frequency with time on task and Hulbert (1963), cited in Dingus,  Hardee, and

Wierwille (1985) found that sleep deprived drivers have a lower frequency of steering

reversals than rested drivers. Sugarman and Cozad (1972) found that steering magnitude

increased with time. Other researchers such as Dureman and Boden (1972), cited in

Haworth, Vulcan, Triggs, and Fildes (1989) and Mast, Jones, and Heimstra (1966),  cited in

Haworth  et al. (1989) have found that there is a deterioration of steering performance with

drowsiness. Erwin (1976) has also found a reduction of “micro-wheel adjustments” during

drowsiness. However, Erwin states that the wheel adjustment measure may not be predictive

since EEG signals that indicate the onset of drowsiness precede the change in steering wheel

adjustment behavior. Several steering-related measures have been found to be accurate and

reliable measures for the detection of drowsiness, all of which are feasible for on-the-road

use. The names of the measures described below are simply the variable names used in

previous studies.

. STVELM: The steering velocity weighted heavily for fast maneuvers has been found

to be highly correlated with eye closure and was influenced by sleep

deprivation and time on task (Skipper, Wierwille, and Hardee, 1984).

l STEXEED: The number of times steering velocity exceeded a criterion (150

degrees/second over a three minute interval) was found to contain a
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significant amount of independent information. This measure is

considered to show some potential as a drowsiness indicator (Dingus,

Hardee, and Wierwille, 1985).

l STVELV: Steering velocity variance (calculated over a three-minute interval) was

found to show potential as a drowsiness indicator (Dingus, Hardee, and

Wierwille, 1985).

. LGREV: The number of times the steering wheel position increment exceeded 5

degrees (after steering wheel velocity passed through zero) was found to

show potential as a drowsiness indicator (Dingus, Hardee, and Wierwille,

1985).

Heading/head rate/lateral acceleration related measures. Heading errors can quickly

become a major problem when driving at high speeds. For example, if heading changes by 1

degree from straight ahead at 60 miles per hour, the lateral velocity will be approximately 1.5

feet per second. It is easy to see that heading is closely related to lane maintenance and

steering-related measures. It is no surprise then that changes in heading and heading rate

may also be possible measures that could be employed to detect drowsiness. Several

heading- and heading rate-related measures have been found to be accurate and reliable

measures for the detection of drowsiness, all of which are feasible for one-the-road use. The

names of the measures described below are simply the variable names used in previous

studies.

l YAWDEV: The global maximum yaw deviation was found to be highly correlated

with eye closure and was influenced by sleep deprivation and time on task

(Skipper, Wierwille, and Hardee, 1984).
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l YAWVAR: The yaw deviation variance (calculated over a three-minute period) was

found to contain a significant amount of independent information. This

measure is considered to be an accurate and reliable measure for the

detection of drowsiness (Dingus, Hardee, and Wierwille, 1985).

l YAWMEAN: The mean yaw deviation (calculated over a three-minute period) was

found to contain a significant amount of independent information. This

measure is considered to be an accurate and reliable measure for the

detection of drowsiness (Dingus,  Hardee, and Wierwille, 1985).

and acceleration measures. The ability of a driver to apply brakes and

accelerator adequately so as to maintain consistent driving speed is of obvious importance.

Erratic driving or slowed braking responses may be a factor that could contribute to an

accident.

Hulbert (1963) found that sleep deprivation contributes to the slowing of accelerator

behavior. Safford and Rockwell (1967) found that accelerator pedal reversals were highly

correlated with time during a twenty-four hour driving study. However, a literature review

conducted by Hardee, Dingus,  and Wierwille (1985) reported little evidence that accelerator

behavior was related to time on task or drowsiness. Several other studies confirm the

findings by Hardee et al (Brown, 1965; Brown, 1966; Brown, Simmonds, and Tickner,  1967;

Huntley and Centybear, 1974). It was also found by Huntley and Centybear that brake usage

did not significantly change with sleep deprivation. Several other studies also confirm these

findings (Brown, 1965; Brown, 1966: Brown, et al., 1967).

Related to braking and acceleration behavior is speed-related behavior. Speed

variability, including longitudinal acculturation and velocity maintenance, have not shown

consistent results with regard to performance degradation in sleep deprived subjects. Mast,

Jones, and Heimstra (1966) found significant differences between subjects’ abilities to

maintain constant velocity during the first and last hours of both four- and six-hour simulated
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driving sessions. Riemersma, Sanders, Wildervanck, and Gaillard (1977) found that speed

variability significantly increased during night driving. However, three studies (Brown,

1965; Brown, 1966; Brown, et al., 1967) did not find a significant change in velocity

maintenance ability in both eight- and twelve-hour driving tasks. Safford and Rockwell

(1967) found no increases in speed variability during a 24 hour driving test.

The ability to follow a lead car at a consistent and safe distance is quite important

while driving at high rates of speed. It was found by Muto and Wierwille (1982) that

subjects’ reaction times to an emergency situation involving the sudden deceleration of a lead

car in a simulated car-following task were significantly greater after driving for 30, 60, and

150 minutes when compared to baseline runs. Muto and Wierwille state, however, that

repeated response trials may not provide valid indications of fatigue-induced decrements in

performance.
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Chapter Two

Evaluation of Driver Drowsiness by Trained Raters:

Development of AVEOBS Operational Definition of Drowsiness

(This chapter represents an extended summary of work reported  in the Second

Semiannual Research Report, dated October 15, 1992, and referred to as

Wierwille and Ellsworth, 1992)
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INTRODUCTION

One of the findings of the literature review was that insufficient  information existed

on defining the level of drowsiness of drivers in a practical way. Specifically, the human

factors research literature contains very few reports of studies which have used observers to

rate the level of drowsiness exhibited by an individual. Most of the existing literature

addresses studies that employed subjects to perform subjective self ratings. However, a study

carried out by Carroll, Blisewise, and Dement (1989) in several nursing homes investigated

the ability of observers to rate levels of drowsiness. The results of the study suggested that

the use of observer ratings is a valid approach to studying drowsiness.

Therefore, efforts were directed toward the development of operational definitions of

drowsiness based on observer rating. The primary objective of this study was to determine if

an accurate operational definition of drowsiness could be developed by rating video taped

segments of drivers at various levels of alertness. This study employed trained raters

(subjects of the study in this case) who were familiar with the behavior of drowsy

individuals. The raters were trained to look for behaviors oftentimes exhibited by drowsy

individuals. Specifically, as an individual becomes drowsy, behaviors such as rubbing of the

face or eyes, scratching, facial contortions, and moving restlessly in the seat may be

exhibited. These actions are thought of as countermeasures to drowsiness. They occur

during the intermediate stages of drowsiness. As an individual becomes very drowsy eyelid

closures may exceed two or three seconds. These slow eyelid closures may be accompanied

by a upwards or sideways rolling movement of the eyes themselves. A drowsy individual

may also appear not to be focusing the eyes properly, or may exhibit a cross-eyed (lack of

proper vergence) look. Facial tone will probably have decreased. Very drowsy drivers may

also exhibit a lack of apparent activity and there may be large isolated (or punctuating)

movements, such as providing a large correction to steering or reorienting the head from a

leaning or tilting position.
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A determination was made as to whether trained raters were able to consistently and

accurately rate levels of drowsiness through the observation of the video taped faces of

drowsy drivers. Consistency within raters and consistency between raters were evaluated.

The specific objectives of this study were as follows:

Objective 1: Evaluate intrarrater reliability. (To determine if a rater assigns scores

consistently.)

Objective 2: Evaluate test-retest reliability. (To determine whether a rater will score

similarly on the same measure at two different points in time.)

Objective 3: Evaluate inter-rater reliability. (To determine if different raters assign

similar scores using the same instrument under the same conditions.)

Objective 4: Create a new operational measure of drowsiness based on observer rating

of drowsy drivers for later use in the development of drowsiness-

detection algorithms.

If an observer rating method could be devised thatcould predict performance under a

variety of apparent drowsiness levels, then it could serve as an alternative operational

definition of drowsiness in the algorithm development study.
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METHOD

Six individuals (three males and three females) volunteered to participate in this study.

All participants were graduate students in the Human Factors Engineering program at

Virginia Polytechnic Institute and State University. Human Factors students were chosen

because of their familiarity with subjective rating procedures and human factors methodology

(It was assumed that persons performing drowsiness evaluations in research or in applications

would have received behavioral training). Each individual participated in two sessions, each

lasting approximately two hours.

Apparatus

Previous experiments involving drowsy drivers had been performed in the Vehicle

Analysis and Simulation Laboratory, in which low-light level video recordings of the drivers’

faces had been made. The videotapes were retained for archival purposes and were available

for use in the present study. The tapes showed drivers driving a computer controlled,

moving-base driving simulator, and contained episodes of a variety of levels of apparent

drowsiness. Thus, segments of the tapes could be transferred to new master tapes for use in

the present experiment.

The subjective ratings of the video segments were performed in the Vehicle Analysis

and Simulation Laboratory using a JVC Super VHS stereo video cassette recorder and a 20-

inch Sony Trinitron color monitor. This system was used to playback segment recordings of

different drivers at various levels of drowsiness. The segments were dubbed onto two

separate tapes. The segments to be dubbed were located using a Panasonic VHS stereo video

cassette recorder and a 20-inch General Electric color monitor. Once located, the segments

were transferred from tape to tape using a JVC Super VHS camcorder and the JVC Super

VHS stereo video cassette recorder mentioned above. After all segments were transferred

from one tape to the other. the tapes were audio dubbed using the JVC Super VHS stereo

video cassette recorder.
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The scale used to perform the rating task was a form of the Likert Scale known as a

Descriptive Graphics Scale. The continuous scale consisted of five descriptors: Not Drowsy,

Slightly Drowsy, Moderately Drowsy, Very Drowsy, and Extremely Drowsy. There was one

scale for each segment totaling 48 scales (24 scales for each session). However, for the

experiment, each scale was on a separate slip of paper, approximately 22 cm wide and 7 cm

high to avoid influences from previous scores.

A Macintosh II personal computer was used to analyze the data from this experiment.

SuperANOVA 1.11 and Microsoft Excel 3.0 were used to perform statistical analyses of the

resulting data.

The experimental design used in this study was a single factor within-subject complete

factorial design. The single factor was rater. This main factor (with six levels) was treated as

the independent variable. By treating rater as the independent variable, each cell of the

experimental design contained 48 replications of the rating task. In this experimental design,

Subject was a within-rating-task variable rather than rating-task being a within-subject

variable. The dependent variables were the raw-error-rating-scores. In both cases, errors

were defined as differences from the mean across raters. There were 48 scores per

experimental ceil giving a total of 288 data points.

The 48 segments to be rated were divided into two groups and then recorded onto two

video tapes (24 segments per tape). The segments represented various levels of

alertness/drowsiness and were assigned to a location on the tape. One tape was presented

during the first session and the other tape was presented during the second session, which

occurred approximately one week after the first session. A counterbalanced design was used

in which half the raters received Tape A first followed by Tape B, while the other half of the

raters received Tape B first followed by Tape A. Raters 1, 2 and 3 (two males and one

female) received Tape A then Tape B while raters 4, 5 and 6 (two females and one male)
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received Tape B then Tape A. The reason for having two video tapes separated by one week

was to allow the determination of test-retest reliability.

Intrarrater reliability. On each of the tapes, three of the segments were repeated on that

same tape. On Tape A, Segments 3, 8, and 10 were repeated as Segments 23, 18, and 19

respectively. Likewise, on Tape B Segments 3, 8, and 10 were repeated as Segments 23, 18,

and 19, respectively. During a particular session, the rater was exposed to the three segments

twice. The repetition of segments gave six sets (pairs) of scores for each rater which were

used to determine intrarrater reliability.

Test-retest reliability. In addition to having three of the segments repeated within  each

session, three different segments from the first session were repeated in the second session.

Segments 5, 12, and 20 from Tape A were repeated as Segments 20, 12, and 5, respectively,

on Tape B. Therefore, each rater was exposed to these three segments a second time during

Session 2. This procedure of repeating segments gave three pairs of scores per subject for

use in determining test-retest reliability.

Interrater reliability. To determine interrater reliability, all repeated segments and the

first segment (the practice segment) were temporarily deleted from the data. Only those

segments that were not repeated were used in the statistical analysis. After deleting the

repeated segments, there remained 28 segments per rater (14 segments from each session).

Procedure

On the first day of the experiment, the rater was asked to read the general instructions

for the experiment. These instructions described the nature of the experiment, the tasks to be

performed, and the approximate length and timing of the two sessions. The instructions

made it clear that the rating scale was a continuous one and that the rater could place a rating

anywhere on the scale, not just at one of the  descriptors. Once the instructions were read, the

rater was asked to read the informed consent form and sign the form if he or she agreed to the

conditions of the study. Any questions concerning the instructions, the informed consent

form, or the experiment in general were answered. The rater was then seated in front of the
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video recorder and monitor. At this point the experimenter reviewed the instructions and

gave additional instructions. These additional instructions included showing the rater the

rating forms, giving examples of how to correctly mark the scales, and providing the rater

with the “Description of Drowsiness Continuum” form. This form contained a description of

the various levels of drowsiness and gave an idea of the characteristics to look for when

rating the segments, The rater read the description form before the experiment began and

was also allowed to refer back to the description form during the experiment. Once all

questions had been answered, the first experimental session began.

When the rater returned after approximately one week for the second session, the

written instructions were offered for review. Once the instructions were reviewed the

experimenter asked the rater to review the Description of Drowsiness Continuum form.

ntal task procedures. The rating task consisted of viewing 24 segments of

different drivers at various levels of drowsiness for each session and subjectively rating each

segment on its corresponding rating scale form. When the experimental session began, the

first videotaped image appeared on the screen. A short time thereafter, a recorded voice

instructed the rater to begin the evaluation for that segment. For example, at the beginning of

Segment 1 , the rater heard “Begin, Segment 1."” This command informed the rater that the

evaluation period for segment 1 had begun. The rater observed the videotaped driver until a

second voice command, “End, Segment 1” was given. (The length of the evaluation period

was one minute.) The “End” command informed the rater that the evaluation period was

over and that a rating on the scale was to be provided. The rater observed the beginning of

the videotaped image prior to the “Begin, Segment __”command, but was instructed to only

rate the interval between the “Begin” and “End” commands.

After the “End” command was given, the segment continued for 15 seconds, but the

rater did not evaluate this section. Once the 15 seconds had elapsed, the screen went blank

for 10 seconds before the next segment appeared. The rater used the last 15 seconds of the

segment and the 10 seconds of blank screen in between the segments (totaling 25 seconds) to
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provide a rating.- If this amount of time was insufficient, the rater asked the experimenter

(who sat behind the rater) to pause the tape until the evaluation was completed. This pausing

technique allowed the rater to refer to the Description of Drowsiness Continuum sheet. Once

the rating was accomplished, the experimenter restarted the tape. The rater could also change

an answer if desired, but only if the rating was changed before the next segment started.

(Only the current segment rating could be changed.) The rater was not permitted to go back

to a previous segment to change a rating. The sequence continued until all 24 segments had

been rated.
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RESULTS

The first step in analyzing the data was to convert the subjective scores on the rating

scale to a numerical value. This task was accomplished by converting the scale to a hundred

point scale and then measuring the location of the given rating. The second step was to pair

the repeated segments to perform the correlations on these data. The third step was to

eliminate the paired data points and the practice segment from the original data set. The final

step was to convert the original data scores into raw error rating scores and absolute error

rating scores. The mean of each segment was determined and ranked from low to high. Each

subject’s raw data were then plotted against this ranking, as shown in Figure 3. The graph

suggests that there was little, if any, error of central tendency in the experiment. Error of

central tendency refers to placing ratings in the middle of the scale and avoiding extreme

positions. It can be seen from the graph that subjects rated at both the low ends and the high

ends of the scale as well as near the middle.

The raw error scores were obtained by subtracting each segment’s mean score from

the score given by each rater. Because there is no numerical (or objective) definition of

drowsiness, an independent variable did not exist for this experiment. Therefore the raters’

scores were compared to the mean segment score to determine consistency of the scores. The

absolute error scores were obtained by taking the absolute value of the raw error scores.

Thus, 28 raw error scores and 28 absolute error scores were derived for each subject resulting

in a total of 168 raw and absolute error scores across all six subjects. Because of the way the

error scores were calculated, a positive error score indicated that the segment was overrated

compared to the segment mean rating and a negative error score indicated that the segment

was underrated compared to the mean rating for that segment.

Four different correlations and four paired t-tests were performed on the data. The

criterion for acceptability for the correlations was 0.80. The first correlation compared first

exposure to second exposure for the segments that were repeated within a session. As
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mentioned, three segments were repeated in Session 1 and three segments were repeated in

Session 2. Therefore, six pairs of data points per subject existed, giving a total of 36 data

pairs with which to perform the correlation. This correlation was used to determine if raters

tend to be consistent within themselves when scoring segments during the same time period.

The measurement is an indication of intrarrater reliability. A paired t-test was also

performed.

The second correlation was performed to determine the relationship between first

exposure ratings and second exposure ratings from session one only. There were 3 data pairs

per rater (a total of 18 pairs) for this correlation. The third correlation was also used to

determine the relationship between first exposure ratings and second exposure ratings, but

these data came from session two. Again, three data pairs per rater, giving a total of 18 pairs

of data, were used to calculate the correlation. Both of these correlations are indications of

intrarrater reliability, but the sessions were analyzed separately to determine if a

fatigue/learning effect existed. Once computed, the correlations were compared to one

another to determine if a significant difference existed. Separate t-tests were performed on

each of the two sets of data.

The fourth correlation was performed to determine test-retest reliability. The three

segments from session one were paired with the corresponding repeated segments from

session two. The three pairs per rater gave a total of 18 pairs with which to determine if

raters consistently rated segments at two different points in time (i.e., over a week’s period).

A fourth r-test was performed on the data to determine if the difference between pairs was

significantly different from zero.

An additional correlation analysis was performed as part of the interrater reliability

analysis. It involved correlating the raw ratings of each rater with every other rater, as a

means of quantitatively assessing consistency.

Two Analyses of Variance (ANOVAs) were conducted on the data. The first ANOVA

compared the raw error rating scores in each experimental cell to determine if there were any
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biases in subject-ratings. Positive biases are indicative of a tendency to overrate segments as

compared to the mean rating for that segment, while negative biases are indicative of a

tendency to underrate segments as compared to the mean rating for that segment. In short,

this analysis was used to determine if the subjects rated the segments consistently from one

observer to the next. The analysis gave an indication of inter-rater reliability.

The second ANOVA compared the absolute values of the raw error rating scores in

each cell to the mean of the segment. This measure made it possible to determine each

subject’s score deviation from the mean segment rating. Clearly, absolute error rating scores

that are close (or equal) to zero indicate accuracy of rating with respect to the mean, whereas

absolute error rating scores that are greater than zero signify less-than-accurate ratings with

respect to the mean. Thus, the ANOVA indicated whether a difference existed in score

deviations from the mean when comparing subjects.

Post-hoc analyses of significant main effects were performed using the Newman-Keuls

pairwise  comparison technique. This procedure was used to determine exactly which

observers were significantly different from one another on the rating task.

Analysis of Intrarrater Reliability

The Pearson r correlation procedure gave a correlation value of 0.88 (t = 10.92, d.f. =

34) for intrarrater reliability. This value was significant (p < 0.001). This result indicates

that raters consistently rated the level of drowsiness when asked to rate the same segment

twice. The paired t-test gave a value t = 0.032 (d.f. = 35); p > 0.20.

Session 1 Correlation versus Session 2 Correlation

The comparison between the two correlations did not show a significant difference.

The correlation value for Session 1 was 0.93 and the correlation value for Session 2 was 0.85.

Both these correlations are significant (p < 0.001; t = 9.98, d.f. = 16 for Session 1 and t =

6.35. d.f. = 16 for Session 2). Comparison of the two values indicated that they did not differ

significantly from one another (p = 0.1335).This comparison suggests there was no learning
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effect from Session 1 to Session 2. The t-tests performed on these data were not significant

(p > 0.20; t = -0.46, d.f. = 17 for Session 1 and t = 0.33, d.f. = 17 for Session 2). The results

of the t-tests indicate that the differences within data pairs in both sets of data were not

significantly different from zero.

ysis of Test-Retest Reliability

The correlation value for test-retest reliability as determined by the Pearson r correlation

procedure was 0.81 (t = 5.45, d.f. = 16). This value was significant (p < 0.001) and indicates

that raters consistently rated the level of drowsiness when asked to rate the same segment

twice with a given period of time (i.e., one week) separating the two exposures. The paired t-

test yielded the value t = 0.66 (d.f. = 17) which is not significant (p > 0.20), indicating that the

differences within pairs of data were not significantly different from zero.

ysis of Interrater Reliability

The ANOVA performed on the raw error scores revealed a significant main effect of

rater (F = 5.159, p = 0.00 1). This effect indicates that raters demonstrate differential biases

when rating the level of alertness/drowsiness. Raters 1, 2, and 5 tended to underrate the

level of drowsiness with respect to the mean and raters 3, 4, and 6 tended to overrate the

level of drowsiness (Figure 4). Post-hoc analysis using the Newman-Keuls technique (a =

0.05) revealed which raters were significantly different from one another. Rater 3 (mean =

8.17) rated significantly different from raters 1 (mean = -6.90), 2 (mean = -3.94) and 5

(mean = -4.65). Raters 3 tended to overrate as compared to the mean while raters 1, 2, and

5 tended to underrate. Rater 4 (mean = 3.78) rated significantly higher as compared to the

mean than rater 1 (mean = -6.90). Rater 6 (mean = 3.53) rated significantly higher than

raters 1 (mean = -6.90) and 2 (mean = -3.94). Surprisingly, the Newman-Keuls post-hoc test

did not show a significant difference between raters 6 and 5. The test also did not show a

significant difference of rater 4 and raters 2 or 5. The differences in the means of these

raters are greater than other differences in means which are significant, and seem to be an
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Figure 4: Mean Rating Error as a Function of Observer. (Mean ratings having common
letters do not differ significantly, a = 0.05)
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artifact of the Newman-Keuls post-hoc test. If one rater is removed and the test is

readministered using only 5 raters, then the above mentioned non-significant differences

become significant. For example, if rater 2 is removed from the data, then rater 4 is

significantly different from rater 5. If rater 5 is removed, rater 4 becomes significantly

different from rater 2. And, if the test is performed after removing rater 4, rater 6 is

significantly different from rater 5. These observations indicate that the above mentioned

subjects should be considered as significantly different from one another. Accordingly, the

raters then fall into two groups that are significantly different from one another.

Descriptively speaking, the means ranged from -6.90 to 8.17. The average standard

deviation across all raters’ scores was 12.5. This value is an indication of the spread of

ratings that can be expected anytime an observer performs a rating on the level of drowsiness.

lysis of Absolute Error Scores

The ANOVA performed on the absolute error scores revealed no significant effect of

Subject, F(5,135)  = 1.537, p = 0.1929. This result suggests that individuals tend to display

the same accuracy when it comes to rating the level of drowsiness. The mean absolute rating

error for each subject is depicted graphically in Figure 5. (The reader is cautioned however

that differences are not statistically significant.) The average mean absolute rating error

across all raters was 10.85. This value is an indication of the expected magnitude of error

(from the mean) for a subject rating the level of drowsiness.
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Figure 5: Mean Absolute Rating Error as a Function of Observer. (Differences are not
statistically significant. a = 0.05.)

13.16

11.85

11.14
10.78

10.45

7.72

0

2

4

6

8

10

12

14

6 1 5 4 3 2

Subject Number

M
ea

n 
A

bs
ol

ut
e 

R
at

in
g 

E
rr

or



DISCUSSION ANDCONCLUSIONS

Interpretation of Results

The correlation values for intrarrater reliability and for test-retest reliability were

greater than 0.80 indicating that raters tended to be consistent within themselves. Intrarrater

reliability correlation (0.88) was slightly higher than test-retest reliability correlation (0.81)

and suggests that the raters may lose a small amount of consistency over time. However,

according to the statistical test to determine if a learning/fatigue effect existed between

Session 1 and Session 2, the two correlations were not significantly different.

It is not surprising to find that there was a significant rater main effect in the ANOVA

that was performed on the raw error rating scores. However, the previously mentioned study

by Carroll et al. (1989) indicated that interrater reliability was high for observers studying the

disturbances of the sleep-wake cycle. The rater main effect indicates that raters demonstrate

differential biases when rating the level of drowsiness. Variability between raters can most

likely be attributed to differences in individual definitions of drowsiness. Even though each

rater was provided with the same Description of Drowsiness Continuum form, the

interpretations of these descriptions may vary across raters.

According to the Analysis of Variance performed on the absolute rating error scores,

raters’ absolute error rating scores were not significantly different from one another. This

result suggests that informed raters tend to display the same accuracy when it comes to rating

the level of drowsiness.

Conclusions of the Study

The results from this study indicate that there is a good degree of consistency among

and within raters when rating the level of drowsiness using videotaped segments of drivers’

faces. The intrarrater reliability and the test-retest reliability indicate that raters are consistent

within themselves. Even though the ANOVA of the raw error rating scores showed a

significant effect of rater suggesting that inconsistent biases in ratings exist between raters,

one must look at the spread of the means of raw error rating scores as compared to the scale
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used. The means ranged from -6.9 to 8.17 giving a spread of approximately 15 points. Very

small increments were used for the divisions on the scale used to convert the ratings to

numerical values. The distance between any two descriptors on, the scale was 25 points. The

15 point spread of means constitutes only 3/5 of the distance between one descriptor and the

next. Furthermore, the ANOVA performed on absolute ratings as a function of rater was not

significant. Therefore, a good degree of consistency is present between raters when rating

the level of drowsiness in this study.

Finally, it is clear that the raters in this study were willing to use the entire scale.

They ascribed widely different values to what they observed in the various videotaped

segments. These findings, along with the reliability findings, suggest that ratings of

drowsiness by informed raters do consistently discriminate between presented conditions.

ications of Validity

The previously described experiment shows that there is consistency and reliability in

the ratings produced. However, the experiment does not and cannot indicate the extent to

which the raters are rating the “‘true drowsiness level,” since drowsiness is not a precisely or

numerically defined quantity. It will be recalled that individual rating errors had to be

defined in terms of deviations from the mean of all the raters. because there is no universal

definition of drowsiness or drowsiness level. How, then, does one determine the validity of a

drowsiness assessment procedure, such as that obtained from the rating process described in

this paper? Or in short, how does one establish validity?

There are several approaches to validity. One approach is to apply the rating procedure

to an actual or operational situation and determine whether the procedure “measures what it is

supposed to measure” (Ghiselli, 1964). This is an application-oriented approach. Another

possible approach is to compare the rating procedure to other supposed indicators of

drowsiness in a controlled experiment. Such indicators might be physiological, performance

based, or subjective. If it can be shown that the candidate assessment method provides
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results that covary with a variety of other known indicators, then the new method reflects

changes associated with the common independent variables.

To provide answers to questions about validity, an additional, new experiment was

conducted. Briefly, the experiment involved having sleep-deprived subjects perform

alternating letter search and arithmetic tasks on a computer screen while a variety of

measures were taken (Ellsworth, Wreggit, and Wierwille, 1993). The various measures were

then correlated with informed-rater drowsiness ratings using a procedure identical to that

described in this paper.

Typical results are shown in Table 4. As can be seen, correlations of rater ratings with

eye closure and subject ratings are high, and correlations with physiological and performance

measures are moderate. The results are for eight subjects and four raters. Three of the eight

subjects did not exhibit any signs of drowsiness whatsoever. When they were eliminated

from the data analysis, correlations values increased. These results, taken together, support

the validity of rater assessment of drowsiness, and suggest that rater assessment is a viable

method of drowsiness assessment when a video image of the vehicle operator is obtainable.
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Table 4: Correlations of Rater Drowsiness Ratings with Other Indicators

PERCLOS AVECLOS EYEMEAS SUBRATE RTMTHCOR RTLTCOR

0.711 0.911 0.875 0.833 0.322 0.547

MNALPHA MNTHETA ABRATIO THREOG MNHRT MNSQHRT

0.568 0.567 0.468 0.483 -0.547 -0.525

Indicator Measures

PERCLOS: percent time that the eyes were more than 80 percent closed

AVECLOS: mean percent eye closure

EYEMEAS: mean square of percent eye closure

SUBRATE: subject on-line rating of drowsiness using an adjustable bar-knob control

RTMTHCOR: mean time to correct response in the math task

RTLTCOR: mean time to correct response in the letter search task

MNALPHA: mean amplitude of the EEG alpha wave, measures at the occipital lobe.

MNTHETA: mean amplitude of the EEG theta wave, measures at the occipital lobe.

ABRATIO: ratio of MNALPHA to mean amplitude of the EEG beta wave, measured at

the occipital lobe

THREOG: percent time that the electrooculogram was above a set threshold (indicating

eye blink or eye roll or both)

MNHRT: mean of instantaneous pulse rate

MNSQHRT: mean square of instantaneous pulse rate
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Chapter Three

Initial Drowsiness Definition Experiment:

The Development of NEWDEF

(This chapter represents an extended summary of work reported in the Third

Semiannual Research Report, data April 10, 1993 and referred to as Ellsworth,

Wreggit, and Wierwille, 1993)
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INTRODUCTION

This study focused on the development of an operational definition of drowsiness

based on a combination of slow eyelid closure and other physiological measures. Although

slow eyelid closure is a very accurate operational definitional of drowsiness, more accuracy

may be gained if other measures are “blended” with slow eyelid closure measures. The

primary limitation of the slow eyelid closure measures is that drivers may not exhibit this

behavior until they are severely drowsy and/or impaired. Therefore, the purpose of this

study was to determine if other physiological measures, used in conjunction with slow eyelid

closures, could be used to create an enhanced definition of drowsiness. If such a blend could

predict performance under a variety of apparent drowsiness levels, then it could serve as an

alternative definition of drowsiness in the algorithm development study.

The Virginia Tech driving simulator was used for the experiment, however, the

subjects in the experiment did not drive. Instead, the subjects viewed the simulator display

and performed two types of tasks which were presented on the display. Push-buttons on the

steering wheel were used by the subjects to respond to the two tasks.

A detection task (low-level cognitive task) consisted of a group of random-letter

characters being displayed on the screen. If the subject detected one of the two target

characters, the subject pressed the “yes” push-button located on the steering wheel. If none

of the target letters were present in the field, the subject pressed the “no” push-button.

An arithmetic task (high-level cognitive task) consisted of mathematical problems that

had numerical integers for answers. The subject was instructed to press the “even” push-

button located on the steering wheel if the answer to the problem was even and to press the

“odd” push-button located on the steering wheel if the answer to the problem was odd.

Correlation analyses and multiple regression were performed on the collected data. The

purpose of the correlation analyses was to determine which measures could reliably detect

performance impairment.
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The purpose of the multiple regression analyses was to determine linear combinations

of the impairment detection measures that would best predict impairment resulting from

drowsiness. Multiple regression analyses were conducted on the physiological measures

most highly correlated with performance measures to determine linear relationships between

measures to predict performance impairment (due to drowsiness). Upon completion of the

multiple regression analyses, various algorithms had been developed that contained a

combination of slow eyelid closure measures and other physiological measures.
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METHOD

Subjects

Eight subjects (four males and four females) volunteered to participate in this study.

All potential subjects filled out a questionnaire regarding driving habits and sleeping habits

before the experiment was run. Individuals who were not prone to drowsiness (found

through use of the questionnaire) and those exhibiting pathological sleep disorders were not

used in the experiment. In addition, potential subjects who were heavy smokers (more than

three cigarettes per day) were not considered. The decision to exclude heavy smokers was

made on the basis that these individuals would not be permitted to smoke for a substantial

period of time (from approximately 7 P.M. to 3 A.M.). All subjects were required to have

20/30 corrected vision.

Figure 6 shows the equipment arrangement for the drowsiness experiment. Items of

equipment are discussed separately in the following sections.

Simulator. The simulator used for the proposed research was a computer-controlled,

moving-base automobile driving simulator located in the Vehicle Analysis and Simulation

Laboratory. However, subjects did not drive this driving simulator. The simulator remained

static during the entire experiment. The subjects viewed the simulator display with the lens

system removed the usual display generation equipment disconnected. Specific tasks that the

subjects were required to perform were exhibited on the simulator display. The steering

wheel of the simulator had two push-buttons the subjects were to use to complete the tasks.

Signals from the steering wheel push-buttons were sent to an IBM-PC for data collection.

IBM-PC Computer and Metrabyte PIO-2 Logic Interface Card. An IBM-PC

generated the tasks on the simulator display. A new task appeared every 10 seconds. Task

generation was accomplished using a program written in the BASICA programming

language. The tasks were simultaneously displayed on the PC display and the simulator
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display. Two types of tasks (a mathematical task and a letter detection search task) were

generated alternately by the BASICA program and displayed on the monitors.

The PC was also used to collect the subject responses to the tasks. When a subject used

the push-buttons located on the steering wheel of the simulator to complete the displayed

task, a signal was sent to the IBM-PC via a Metrabyte PIO-2 8-channel logic interface card.

The computer was programmed to recognize the button presses and record whether the

responses were correct or incorrect. After every one-minute period, the PC stopped

collecting data and calculated the number of correct responses, incorrect responses, and no

responses for the mathematical task, the number of hits, misses, correct rejections, false

alarms, and no responses for the detection task, the average response time for both types of

tasks regardless of whether the response was correct or incorrect, and the average response

time of correct responses for both task types. For the detection task, the average response

time for correct response was split into average response time of correct response and average

response time of correct rejection. These two averages were calculated separately.

Another function that the IBM-PC performed was to send signals to a WIN 486-33i,

microcomputer telling the WIN when to start and when to stop collecting data. A high logic

signal telling the WTN to start collecting data was sent as soon as the PC program started. At

the end of each minute, the PC sent a low signal to the WIN telling it to stop collecting data

and to complete calculations, store the results, and clear. At the beginning of the next

minute, the PC sent a high signal telling the WIN computer to once again begin data

collection. This sequence continued for the entire study.

The fourth function that the IBM-PC performed was to send signals to an LED mounted

in front of the low light level camera shooting the subject’s face. A low signal was sent at the

end of each one-minute segment. When the low signal was sent, the LED turned on and

indicated on the videotape that a one-minute interval had ended. This low signal was the

same signal that told the WIN to stop collecting data, to complete calculations, store the

results and clear. The LED stayed on until the calculations had been completed. Once the
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calculations had been completed, a high signal was sent which turned the LED off. This high

signal was the same signal that told the WIN to once again start the data collection process

for the next one-minute duration.

Win 486-33i Microcomputer and National Instruments AT-MIO-16 Interface Card

The WIN 486-33i  microcomputer collected data via an AT-MIO-16 interface card on the

following physiological measures - heart rate, eyeball roll, muscle tension, alpha, beta, and

theta wave amplitudes, and eye closure measures. Physiological data were received either

from preamplifiers which were connected to electrodes placed on the subject, or from a direct

line from a closed circuit television for the eye closure measure. Before data collection

began, the WIN received a signal sent from the IBM-PC via the AT-MIO-16 interface card.

The WIN was programmed using a QuickBASIC software package to recognize the signal

from the PC as an indication to start collecting data. After a one-minute interval, another

signal was received from the PC and recognized by the WIN computer as an indication to

stop collecting data, compute calculations, store data, and clear registers to prepare for a new

data collection interval. The WIN computer continued to receive the signals mentioned

(from the PC) at every one-minute interval throughout the experiment.

The calculations that the WIN program performed at the end of a one-minute interval

 were mean heart rate, mean squared-heart rate, heart rate standard deviation, heart rate

variance, the proportion of the time that the eyes were 80% or more closed, the average

percent that the eyes were closed during the one-minute period, the squared value of the eye

closure, the proportion of time the eyerolls were outside a threshold value, the number of

times the eyerolls  fell outside the threshold value, mean alpha wave signal, mean beta wave

signal, mean theta wave signal, the ratio of alpha to beta, the ratio of theta to beta, the ratio of

alpha plus theta to beta, mean EMG signal, the mean subjective rating of drowsiness, the

mean square subjective rating, the subjective rating standard deviation and the subjective

rating variance.
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electrodes. Biopotential skin electrodes were placed in various locations on the

subject to gather physiological data such as eye roll, muscle tension, alpha, beta and theta

wave amplitudes and skin potential. All signals from the electrodes except those for the skin

potential passed through a GRASS high performance preamplifier system before reaching the

COMDYNA signal processor. The preamplifiers feature high gain, adjustable filters, low

noise and an output that can be interfaced with computers.

Eye roll measures were obtained using electrooculography (EOG) via the skin

electrodes placed around the eyes. Because of the constant electropotential difference

between the front and the back of the eyeball, movement of the eyes is easily measured using

electrodes placed on the skin surrounding the eyes. Two electrodes were used to collect the

data. One electrode was placed on the right outer canthus (ROC) area (the temple area of the

right eye) and the other electrode was placed about two centimeters inside the left outer

canthus area. The electrodes were offset from the horizontal midline of the eye by

approximately one centimeter with the ROC electrode being above the horizontal midline and

the LOC electrode being below the horizontal midline. Positioning of the electrodes in this

manner allowed the detection of both horizontal and vertical eyeball movements.

A measure of muscle tension was obtained from electromyography (EMG) through

electrodes placed on the chin and jaw area. Specifically, one electrode was placed on the

chin and one electrode was placed under the jaw near the platysma muscle. This latter

electrode was offset from the vertical midline of the face by approximately three centimeters

and was located on the left side of the jaw. These electrodes were intended to detect a lack of

muscle activity as the facial muscles became relaxed.

Alpha, beta. and theta wave amplitude measures were obtained by passing EEG signals

(from the GRASS preamplifiers) through bandpass  filters and detectors programmed on the

COMDYNA processors. Two electrodes were applied to the occipital region of the scalp to

record the brain wave activity. To obtain acceptable connections, the electrodes were placed

and taped (using adhesive pads) to the subject’s scalp after the hair had been parted in the
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occipital region. A headband fitted from the back of the head , over the ears and around the

forehead was used to supplement the adhesive pads in holding the electrodes in place. (This

procedure was followed so that it would be unnecessary to shave small patches of hair from

subjects.)

The skin potential was measured using two electrodes - one was placed on the left

forearm closer to the inside of the elbow and the other was placed on the left forearm closer

to the wrist. Readings were made using a MICRONTA digital multimeter which allows

direct measurement of DC skin potential level without the use of DC preamplifiers and

amplifiers. This potential level was not collected by the WIN computer. Instead, one of the

experimenters read and recorded the skin potential level 30 seconds into each one-minute

interval. (Skin potential is a slowly varying voltage.)

A “common” electrode was located on the subject’s forehead just below the hair line.

All electrode wires were taped, drawn to the back of the head and bundled in a pony-tail like

fashion behind the head. The wires were kept out of the subject’s view and hopefully, were

fairly unobtrusive.

Ear plethysmograph. Measures of heart rate and heart rate variability were collected

using an ear plethysmograph and commercial heart rate monitor (Hewlett-Packard 7807C).

This form of measurement was easy to implement and was unobtrusive to the subjects. The

data collected from the plethysmograph was passed through the COMDYNA processors for

signal level amplification before reaching the WIN via the AT-MIO- 16 interface card.
. .

Closed circuit television A low-light level closed-circuit television camera (RCA

TC 1004-U01) was used to continuously monitor the eye closures of the subjects. This video

camera shot the subject’s face and eyes and was placed in such a location that the subject’s

view was not obstructed. The image after passing through a VCR appeared on a Sanyo VM

45 12A monitor so that one of the experimenters could manually track the eyelid closures

using a linear potentiometer. The track signal from the linear potentiometer was sent to the

WIN via the AT-MIO-16 interface card after processing by the COMDYNA processor.



A General Electric Hi-fi Audio HD VHS video cassette recorder recorded the image of

the subject’s face for later analysis by behaviorally trained raters. Because the camera and

 recording required no additional lighting and was placed in an inconspicuous position, the

described setup resulted in an unobtrusive way of measuring the subject’s eye closure.

Subjective rating device. A continuous, rotational control was used to collect the

subjects’ feelings of drowsiness. It was located to the right of the subjects’ right leg, in the

horizontal plane. The continuous control was labeled “drowsiness,” and had “Max,” “Mod,”

and “Min” markings. In addition, there was a single marker line between each of the above

settings. The subjects rated themselves during the experiment in terms of the drowsiness

level that they felt. The subjects were asked to change the rating device setting any time they

felt the level of drowsiness had changed. This signal was sent to the WIN via the AT-MIO-

16 interface card after processing by the COMDYNA processors.

Experimental Design

The experimental design used in this study was a single factor within-subject complete

factorial design. The main factor was time-on-task (four levels). The first level was the first

30 minutes, the second level was the second 30 minutes, and so on. During each of the four

30 minute segments, subjects were exposed to a different sequence of alternating

mathematical and search tasks. There were four separate sequences of tasks for the four

levels of time-on-task. Each of the eight subjects received all levels of the main factor.

A counterbalanced design was used to control for order effects of the four task

sequences. Four subjects were randomly assigned to the presentation order of the four

sequences of tasks using a Latin square design. The remaining four subjects were randomly

assigned to the conditions of a second Latin square.

Twenty-one dependent variables were collected during the experiment. These variables

consisted of the following:

1. Heart rate

2. Eyelid closures
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3.

4.

5.

6.

7.

EOG readings

8.

9.

10.

11.

12.

EEG readings- alpha waves, beta waves and theta waves

EMG readings

Skin potential readings

Subject rating - having the subjects rate themselves on the level of drowsiness

they were experiencing

Rater rating - having a behaviorally trained raters analyze the subjects in terms

of the level of drowsiness (post experiment, using videotapes)

Number of correct responses for the mathematical task

Number of incorrect responses for the mathematical task

Number of no responses for the mathematical task

The average response time for the mathematical task - regardless of whether the

13.

14.

15.

16.

17.

18.

19.

response was correct or incorrect

The average response time of correct responses for the mathematical task

Number of hits for the search task

Number of misses for the search task

Number of correct rejections for the search task

Number of false alarms for the search task

Number of no responses for the search task

The average response time for the search task - regardless of whether the response

was correct or incorrect

20. The average response time of correct responses for the search task

21. The average response time of correct rejection responses for the search task

Procedure

Subject procedure.  Each subject who passed the screening tests was asked to read the

general instructions for the experiment and read and signed an informed consent form. Any
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questions concerning the instructions, the informed consent form, or the experiment in

general were answered (both prior to and following signing the form).

Each subject participated in one session which lasted about nine hours. The subjects

arose at 7 A.M. or before on the established experiment day and went through their normal

daytime activities without resting or napping. At 6 P.M., a member of the experimental team

picked the subject up at his or her residence. The team member took the subject to a fast

food restaurant for dinner. The beverages consumed were limited to non-caffinated and non-

sugared drinks. The subject was permitted to smoke during or immediately after dinner after

which time the subject was taken to the Vehicle Analysis and Simulation Laboratory. The

subject was allowed to read, study, watch TV, or listen to a personal headset stereo. The

subject was not allowed to take naps, eat, smoke, or drink caffmated or sugared beverages.

A research team member remained in the lab to ensure that the subject remained awake

throughout the evening. Just before midnight, the subject was given the instruction sheet and

informed consent form to reread.

At midnight, the experimental session began. Two new experimenters placed the

subject in the simulator and verbal instructions were given. The subject was then given a ten

minute practice session. Once the practice session was completed, the physiological

monitoring equipment was fitted to the subject, the lights were dimmed, and the data

collection began. When the two experimenters felt the equipment was ready to go, the lights

were dimmed and the experiment was begun. The subject performed the tasks on the screen

for the entire experiment, which took approximately 130 minutes. If the subject fell asleep

during the data collection period, one of the experimenters woke the subject and asked him or

her to continue with the experiment.

At the end of the experiment, the physiological monitoring equipment was removed

from the subject. The subject was debriefed. paid, and then driven home by one of the

experimenters.
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ental task procedures. The experimental tasks that the subjects were required

to perform consisted of two alternating tasks - a mathematical task and a letter search task.

The mathematical task was considered a higher level cognitive task and the letter search task.

was a simpler, lower level cognitive task.

The mathematical tasks consisted of addition, subtraction, multiplication and division

problems displayed on the simulator screen. Examples of these types of problems are 7x8 =

__, 25/5 = ___, 10x___ = 30, 5+___ = 20, 25-8 = ___.. Each problem had a numerical integer

for an answer. The subject was required to solve the problem, decide whether the answer

was odd or even, and then press the corresponding push-button on the simulator steering

wheel. The task, as it appeared on the simulator screen, is shown in Figure 7.
 .

The letter-search-task consisted of a group of letter characters displayed on the

simulator screen. The letters were randomly selected and were placed in random locations on

the screen. The subject was required to detect one of two target letters (A or B). If either

target letter was detected, the subject was to press the “yes” push-button on the simulator

steering wheel. If no target letter was detected, the subject was to press the “no” push-button.

Figure 8 shows an example of the letter search task as it would appear on the simulator

screen.

When the experimental session began, the two tasks were alternately displayed on the

simulator screen. Each task took approximately 10 seconds before the next task appeared. If

the subject did not respond to the displayed task, the task remained on the screen for the

entire 10 second period. If the subject responded to the task, a feedback remark was

displayed on the screen for the remaining time in the 10 second period. Examples of remarks

that were used for correct responses were “GOOD JOB,” “EXCELLENT” and “WAY TO

GO”. For incorrect responses, examples of feedback remarks used were “WRONG,” “YOU

MISSED A LETTER” and “TRY AGAIN”. This procedure continued throughout the entire

experiment.
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ODD EVEN

7 x 8 =-

Figure 7: Example of a Mathematical Task (as it appeared on the simulator screen).
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Z

G

YES NO

K

A

P

Figure 8: Example of a Letter Search Task (as it appeared on the simulator screen).

58



Data Manipulation

Several data manipulation steps were performed before the data were analyzed. The

first step in manipulating the data was to eliminate or combine those measures that gave the

same information as another measure. For example, the sum of the math errors is a

combination of the sum of wrong math responses and the sum of no math responses.

Therefore, the latter two measures can be eliminated and the sum of math errors measure can

be used as one of the performance measures. When this procedure was completed, the

following measures remained for the data analysis:

. PERCLOS: The percentage of time that the eyes were 80% to 100% closed over a one-

minute interval.

l AVECLOSE: The average percent that the eyes were closed over a one-minute interval.

. EYEMEAS: The mean-square of the eyelid closure signal sampled over a one-minute

interval. (EYEMEAS is more heavily weighted as eye closure increases.)

l AVEOBS: The average drowsiness rating of four informed observers for a one-minute

interval.

l MNSUBRAT: The mean subjective rating over a one-minute interval (The subject moved

a continuous “drowsiness” control marked with settings of maximum,

moderate, and minimum. There were additional scale markers between

minimum and moderate, and between moderate and maximum).

l SUMTHERR: The total number of math task errors over a one-minute interval (the

number of wrong math responses and the number of no math responses).

l SUMLTERR:   The total number of letter task errors over a one-minute interval (the

number of wrong letter responses and the number of no letter responses).

l RTMTHCOR:  The average response time to a correct math response over a one-minute

interval. In situations where subjects gave an incorrect response or did not

respond, a value of 10 seconds was inputted for the response time. This
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l RTLTCOR:

l GLOBAL:

l MNALPHA:

. MNBETA:

. MNTHETA:

. ABRATIO:

l TBRATIO:

. ATBRATIO:

l MNEMG:

l THREOG:

value is the minimum amount of time in which a subject could have

responded correctly.

The average response time to a correct letter response over a one-minute

interval. In situations where subjects gave an incorrect response or did not

respond, a value of 10 seconds was inputted for the response time. This

value is the minimum amount of time in which a subject could have

responded correctly.

Sum of SUMTHERR, RTMTHCOR, SUMLTERR, and RTLTCOR (data

were non-baselined).

The mean alpha EEG amplitude over a one-minute interval. (The alpha

wave was defined as including those frequencies between 8 and 12 Hz.)

The mean beta EEG amplitude over a one-minute interval. (The beta wave

was defined as including those frequencies between 12 and 24 Hz.)

The mean theta EEG amplitude over a one-minute interval. (The theta wave

was defined as including those frequencies between 4 and 8 Hz.)

The ratio of mean alpha wave to mean beta wave amplitudes.

The ratio of mean theta wave to mean beta wave amplitudes.

The ratio of mean alpha wave plus mean theta wave to mean beta wave

amplitudes.

The mean EMG amplitude over a one-minute interval. (The EMG was

collected between 3 and 3000 Hz.)

The proportion of time that the eye-rolls go above threshold over a one-

minute interval. (Threshold was set so that substantial eye-rolls would be

detected).

l NUMRLBLK: The number of times the eye-rolls or blinks exceeded threshold over a one-

minute interval.
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. MNHRT:

. VARHRT:

. MNSQHRT:

. SKINPOT:

The instantaneous heart rate signal in beats per minute averaged over a one-

minute interval.

The mean-square of the heart rate signal sampled over a one-minute

interval.

The variance of the instantaneous heart rate signal calculated for a one-

minute interval.

The skin potential voltage reading which was sampled 30 seconds into

every one-minute interval.

The second step was to calculate two-minute intervals, four-minute intervals and six

minute intervals. The two-minute interval data were calculated by taking an average of the

data for two one-minute intervals for each variable. For example, one-minute intervals one

and two were averaged to give two-minute interval one; one-minute intervals three and four

were averaged together to give two-minute interval two; and so on. The four-minute interval

data and six-minute interval data were calculated likewise except that an appropriate number

of segments were used for averaging.

The third step in the data manipulation process was to delete some of the intervals from

the data set. Even though the subjects had a ten minute practice session before the actual

experiment started, two subjects missed two out of three math problems in the first minute

and several other subjects missed at least one math problem in the first or second minute

interval. Clearly, these mistakes were due to the subjects settling into the experiment and not

due to drowsiness. For the one-minute interval data, the first two minutes of data were

removed. For the two-, four-, and six-minute interval data the first interval was discarded.

Note that the first interval for two-minute interval data consisted of the average of the first

two minutes of the one-minute interval data, the first interval for four-minute interval data

consisted of the average of the first four minutes of the one-minute interval data and the first

interval for six-minute interval data consisted of the average of the first six minutes of the

one-minute interval data. Therefore, two minutes were discarded for the two-minute interval
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data, four minutes were discarded for the four-minute interval data and six minutes were

discarded for the six-minute interval data.

Data Analysis Overview

The data analysis for this research was composed of two major parts. The first part of

the analysis consisted of correlation analyses of all the data. The purpose of these analyses

was to determine which of the dependent variables could reliably detect impairment due to

drowsiness. The second part of the analysis consisted of linear multiple regression analyses.

The purpose of these regression analyses was to find one or more optimized linear

combinations of variables that would best predict impairment resulting from drowsiness.

Various physiological and performance measures were collected and computations

were made on line using the WIN 486-33i  microcomputer and the IBM-PC. In addition, one

of the experimenters manually collected the skin potential level for every one-minute

interval, and a trained experimenter tracked the level of eyelid closure over each one-minute

interval.

Correlation analyses. Correlations were performed between the collected

physiological measures and the collected performance measures. For example, mean heart

rate and heart rate standard deviation were correlated with each collected performance

measure (i.e., the number of correct responses, incorrect responses and no responses for the

mathematical task). In addition, eye closure measures were correlated with all other

physiological measures.

Correlations were perforrned for one-minute intervals of data (118 data pairs), two- .

minute intervals of data (59 data pairs), four-minute intervals of data (29 data pairs), and six-

minute intervals of data (19 data pairs). These intervals were calculated to determine whether

data collected over longer intervals provided greater reliability for drowsiness detection. The

studies by Dingus  et al., 1985 and Hardee et al., 1985 found that in fact longer intervals (six-

minute intervals versus three-minute intervals) were superior in the detection and prediction

of impairment.
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Several correlations were performed with the data in different configurations,

including: all subjects/all data for one-minute intervals, two-minute intervals, four-minute

intervals, and six-minute intervals. “Selecting” subjects/all data (data from subjects

demonstrating performance decrements for a specific performance measure to determine the

averaged correlation matrix) for one-, two-, four- and six-minute intervals; “selecting”

subjects/pick & choose data (this method consists of using data from each subject and

categorizing that data into high performance decrement, medium performance decrement,

and low performance decrement categories) for one-minute interval data.

Multiple regression analysis. Once the correlations were obtained, those showing

highest values were used to help construct possible “definitions” of drowsiness. Multiple

linear regression analysis was employed for definition development. The purpose of multiple

regression analysis is to produce an equation which can be used for prediction of a given

measure at a future time.

Twenty-one performance and behavioral measures were collected and analyzed.

Sixteen of these measures were used to predict the degree of performance impairment. These

predictors of impairment were measures of eyelid closures, subjective self-ratings, observer

ratings, and task performance. Eight of the collected measures were evaluated for reliability

of performance impairment detection. These impairment detectors included heart rate, eyelid

closures, EOG, EEG, EMG, skin potential, subjective ratings, and observer ratings.
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Correlation Anaylses Results

RESULTS

It was found that the six-minute interval data were more reliable for drowsiness

detection than the one-, two- or four-minute interval data. For two types of data

configurations (all subject/all data method and the “selecting” subject/all data method), a

trend towards increasing correlations existed towards the longer averages. Table 5 contains a

summary of the six-minute correlation results. See Ellsworth, Wreggit, and Wierwille (1993)

for a complete set of results.

In most cases, when the two data configurations are compared, the “selecting”

subjects/all data procedure produces some improvement in the correlations.

The pick and choose method was used in an attempt to balance a design between

drowsiness and non-drowsiness. The averaged “selecting” subjects/pick & choose

correlations using only those subjects showing performance decrements produced better

results than either the all subject/all data method or the “selecting” subject/all data method.

The pooled pick & choose method consisted of combining all individual subjects’

pick & choose data together and running a correlation. In general, this procedure produced

poorer results as compared to the previous methods.

Regression Analyses Results

Regression models for the global performance measure showed multiple correlation

values (R) ranging from 0.76 to 0.86. The use of the GLOBAL measure allowed for the

development of an overall linear regression model to predict drowsiness.

The final regression equation recommended for use in further studies to predict

performance impairment due to drowsiness is:

NEWDEF = 6.9 1500 + 18.45722(PERCLOS) - 0.01569(MNALPHA) +

0.020173(MNTHETA) - 0.00549(MNBETA) +

0.000698(MNSQHRT).

The corresponding regression summary is presented in Table 6.
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Table 5: Summary of the Six-Minute Correlation Results

PERCLOS AVECLOSE EYEMEAS AVEOBS MNSUBRAT SUMTHERR SUMLTERR RTMTHCOR RTLTCOR

PERCLOS 1.0000
AVECLOSE 0.8506 1.0000
EYEMEAS 0.9147 0.9844 1.0000
AVEOBS 0.7111 0.9108 0.8746 1.0000
MNSUBRAT 0.6749 0.8027 0.7928 0.8334 1.0000
SUMTHERR 1.0000
SUMLTERR 0.3109 0.3337 0.3478 0.3372 0.2940 1.0000
RTMTHCOR 0.3253 0.2939 0.3149 0.3201 0.2975 0.7634 1.0000
RTLTCOR 0.5192 0.5546 0.5710 0.5471 0.4538 0.5629 0.4330 1.0000
MNALPHA 0.5442 0.5739 0.5678 0.5682 0.5271
MNBETA
MNTHETA 0.5363 0.5660 0.5642 0.5677 0.4755 0.3313 0.3554 0.4276
ABRATIO 0.6105 0.5078 0.5508 0.4683 0.4997 0.2522 0.3032
TBRATIO 0.3943 0.3810 0.3972 0.3660 0.3273 0.3258 0.3065 0.4144 0.4061
ATBRATIO 0.5858 0.5061 0.3440 0.4758 0.4887 0.3065 0.3264 0.3780
MNFMG
THREOG 0.3632 0.3236 0.4827 0.4247
NUMRLBLK -0.3281
MNHRT -0.5780 -0.6122 -0.6195 -0.5471 -0.4314 -0.2807 -0.2772 -0.4780
MNSQHRT -0.5660 -0.5951 -0.6032 -0.5252 -0.4137 -0.2718 -0.2696 -0.4630
VARHRT 0.2992 0.2558
SKINPOT



Table 6: NEWDEF Regression Table

Regression Statistics

Multiple R 0.821551
R Square 0.674946
Adjusted R 0.663814
Square
Standard Error 1.863721
Observations 152

Analysis of Variance

Regression
Residual
Total

df Sum of Squares Mean Square F Significance F

5 1052.998 210.5996 60.63114 6.36E-34
146 507.1247 3.473457
151 1560.123

Intercept
PERCLOS
MNALPHA
MNTHETA
MNBETA
M-NSOHRT

Coefficients Standard Error t Statistic P-value Lower 95% Upper 95%

6.915003 0.18183 38.02996 3.09E-79 6.555643 7.274363
18.45722 1.584909 11.64561 9.06E-23 15.3249 21.58955
-0.01569 0.00243 1 -6.4535 1 1.40E-09 -0.02049 -0.01088

.0.020 173 0.004716 4.277585 3.34E-05 0.010852 0.029493
-0.00549 0.001599 -3.43482 0.000766 -0.00865 -0.00233
0.000698 0.000296 . 2.353869 0.019867 0.000112 0.001283

(See pages 59, 60, and 61 for short definitions of independent measures. See page 82 for ft.111

definitions.)
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The regression results are best understood by studying Table 7. This table shows the

value of R and the number of terms for both non-baselined and baselined data. The

“averages” column shows that the use of all significant terms results in nearly equal R values .

for both non-baselined and baselined data (R = 0.77 in each case). However, the baselining

method used an average of 5.0 independent variables to achieve the regression model while

the non-baselining method used 7.8 independent variables. This suggests that the baselining

method can produce similar values of R with fewer independent variables and is, therefore,

more efficient than the non-baselining method.

When attempts were made to reduce the number of terms in the regression model

while retaining nearly the same value of R as the full model, non-baselined data show greater

vulnerability. For example, using an average of 4.6 terms in the reduced models, the non-

baselined R value is 0.71 while the baselined R value is 0.74. These results suggest that the

baselining method provides small improvements in the models and is, therefore, an

advantageous procedure. Accordingly, emphasis was placed on baselined regression in the

subsequent analyses.

It was found that the two variables associated with the letter task (RTLTCOR and

SUMLTERR) are more easily predicted than those associated with the math task

(RTMTHCOR and SUMTHERR). Reasons for this difference are unclear, however, the

letter task was considered to be much easier than the math task. Therefore, errors may have

been made in the math task that were not drowsiness related. If so, drowsiness related

independent variables would not have been able to predict performance as accurately.

When an attempt was made to predict the GLOBAL measure of performance, the

prediction becomes better (R = 0.85). This is believed to be an excellent fit, considering the

variability of the data. The table shows that a measure of eye closure, two measures of EEG

and two measures of heart rate are sufficient to provide a good predictor of overall task

performance.
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Table 7: Summary of Regression Analyses (From Ellsworth, Wreggit, and Wierwille, 1993)
Note: All table numbers in Table 7 refer to Ellsworth, Wreggit, and Wierwille, 1993

Non-
Baselined

Measure

All Significant
Measures
(a = 0.01)

RTLTCOR

0.85 (9)
Tahle 3 I

RTMTHCOR

0.77 (9)
Table 32

SUMLTERR

0.82 (7)
Table 33

SUMTHERR

0.58 (6)
Table 34

GLOBAL

0.84 (8)
Table 35

AVERAGES

0.77 (7.8)

Reduced Set 0.79 (4)
Of Measures Table 36

0.66 (4)
Tahles 37.4 I

0.78 (5)
Table 38

0.56 (5)
Table 39

0.76 (5)
Table 40

0.71 (4.6)

Baselined

All Significant
Measures
(cl = 0.01)

0.87 (6)
Table 42

0.75 (4)
Table 43

0.83 (6)
Table 44

0.54 (3)
Table 45

0.86 (6)
Table 46

0.77( 5.0)

. RTLTCOR:

Reduced Set 084 (5) 0.71 (4) 0.81 (5) 0.51 (4) 0.85 (5) 0.74 (4.6)
Of Measures Table 47 Table 48 Table 49 Table SO Table 5 I

The average response time to a correct letter response over a one-minute interval. In situations where subjects gave an incorrect response
or did not respond, a value of 10 seconds was inputted for the response time. This value is the minimum amount of time in which a subject
could have responded correctly.

. RTMTHCOR: The average response time to a correct math response over a one-minute interval. In situations where subjects gave an incorrect response or
did not respond, a value of 10 seconds was inputted for the response time. This value is the minimum amount of time in which a subject
could have responded correctly.

l SUMLTERR: The total number of letter task errors over a one-minute interval (the number of wrong letter responses and the number of no letter
responses).

. SUMTHERR: The total number of math task errors over a one-minute interval (the number of wrong math responses and the number of no math
responses).

. GLOBAL: Sum of SUMTHERR, RTMTHCOR, SUMLTERR, and RTLTCOR (data were non-baselined).
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DISCUSSION

The objective of this research has been to provide a “definition” of drowsiness, using

candidate measures that the research literature suggests should be sensitive indicators of

drowsiness. The regression analyses performed in this study represent an attempt to relate

these candidate drowsiness indicators to measurable task performance indicators. Thus, the

independent measures and the ways these measures are combined in the regression analyses

are in fact candidate “definitions” of drowsiness.

Four measures of performance were studied, both individually and in combination

(GLOBAL measure). Final results appear in Ellsworth, Wreggit, and Wierwille (1993).

These results show that with as many as five and as few as two independent variables, it is

possible to achieve a relatively large R value. The independent variables are not difficult to

obtain, and are limited to eye closure, simple EEG and simple heart rate measures. Thus, all

measures can be obtained without overly encumbering subjects with electrodes.
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Chapter Four

Development of Driver-Drowsiness Detection Algorithms

(This chapter represents an extended summary of work reported in the Fourth

Semiannual Research Report, dated October 15, 1993 and referred to as

Wreggit, Kirn, and Wierwille, 1993)
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INTRODUCTION

This study focused on two tasks, including: 1) determining the best statistical

procedure for drowsiness-detection algorithm development and 2) developing a wide variety

of usable algorithms for detection of driver drowsiness.

The dependent measures in this study were definitional measures of drowsiness that

were not considered to be operationally obtainable in an actual vehicle. These measures

included two eyelid-closure measures, the average observer rating measure (developed by

Wierwille and Ellsworth, 1992 -- Chapter Two), an operational definition of drowsiness

developed by Ellsworth, Wreggit, and Wierwille, 1993 -- Chapter Three), and a measure that

was comprised of the standardized sum of the above dependent measures.

The independent measures in this study were operational measures that would be

obtainable in an on-the-road vehicle. The independent measures collected during this study

included driving-related measures, driver-related measures (determined by Ellsworth,

Wreggit, and Wierwille, 1993), and secondary task performance measures. The various

measures were used to create algorithms for the detection of drowsiness while driving.

Multiple regression and discriminant analyses were performed on the collected data to

determine the best predictors of drowsiness. A pictorial representation of the multiple

regression/discriminant analysis objective is given in Figure 9. The results from the two

statistical procedures were compared for classification accuracy.

It should be noted here that in regression and discriminant analysis the definitions of

independent/dependent variables are different than the definitions of independent/dependent

variables in traditional experimental design. In traditional experimental design the variable

being manipulated by an experimenter is the independent variable and the dependent variable

is the measure affected by the independent variable. However, in regression and similar

statistical techniques, the term independent variable refers to predictor variables and the term

dependent variable refers to the variable that is being predicted.
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Measures Obtainable
In Driving
(INDEPENDENT MEASURES)

Seat-Related

Steering-Related

Lateral Accelerometer-Related

Lane-Related

Angular Accelerometer-Related

Display Yaw-Related

A/O Task Related

 Heart-Related

Measures Contained
In Definition
(DEPENDENT MEASURES)

AVEOBS

EYEMEAS

NEWDEF

MASTER

PERCLOS

Prediction

NEWDEF score is from Ellsworth et al. (1993)

Figure 9: Multiple Regression/Discriminant Analysis Objective.
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Multiple regression analyses were initially undertaken to determine optimum

combinations of independent measures that would best predict levels of drowsiness.

Discriminant analyses employed the same sets .of independent variables that were developed

through the use of multiple regression. Classification matrices were then constructed for both

multiple regression output and discriminant analysis output. The results showed that

multiple regression was as accurate as discriminant analysis in classifying levels of

drowsiness. Since multiple regression analysis does have some inherent advantages over

discriminant analysis when dealing with detection algorithm development and use, it was

decided that all algorithms would be developed using multiple regression techniques.

After determining that multiple regression analysis was best suited for the

development of driver-drowsiness detection algorithms, further examination and analysis of

the algorithms could be undertaken. Numerous algorithms were developed using various

classes of measures. The classes of measures included lane-related, steering-related, lateral

accelerometer-related, and secondary task-related measures, among others. By employing

different combinations of measures, a step-up, step-down procedure could be achieved.

Some detection algorithms employ steering and lateral accelerometer measures and other sets

of detection algorithms employ steering, lateral accelerometer, and lane-related measures, for

example. Therefore, loss of a lane-related measure does not cause failure of the detection

system. Rather, the system simply “steps-down” to a model that does not contain lane-

related measures.

Multiple algorithms containing various combinations of classes were obtained in

order to 1) allow the use of a “step-up, step-down” procedure and 2) allow the use of different

operational definitions of drowsiness.
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METHOD

Twelve volunteer subjects (six male and six female) were used in this study. All

subjects lived in the Blacksburg, Virginia area. As part of a screening procedure all

potential subjects were asked various questions over the phone concerning their driving

 habits, sleeping habits, and other relevant questions. Subjects who had atypical sleeping

patterns, sleeping disorders, or were not prone to drowsiness were not used in the study.

Potential subjects who smoked more than three cigarettes per day were not employed as

subjects. This decision was made because subjects would not be allowed to smoke from

approximately 7 P. M. to 3 A. M. It was felt that if heavy smokers either smoked during

those hours or not did not smoke during those hours the subjects’ arousal level may have

been affected.

Subjects’ ages ranged from 18 to 40 years. This age range was chosen because most

accidents due to drowsiness that occur at night involve drivers of this age group. All subjects

were given a Landholt C vision exam and had to demonstrate that they had corrected vision

of at least 20/30.. All subjects were required to have a valid driver’s license.

During the data collection one subject drove the automobile simulator in an

unrealistic and inconsistent manner. In particular, this subject consistently drove on the

shoulder for extended periods of time. Another subject seemed highly stimulated and

exhibited no signs of drowsiness. It was suspected by the experimenters that the latter

subject either napped during the day or surreptitiously ingested a stimulant before the data

gathering run took place. These subjects were run through the entire experiment and paid for

their time. However, the data collected from these two subjects were not used. Two other

volunteer subjects were used as replacements.

A pictorial representation of the peripheral equipment used for algorithm

development is seen in Figure 10.
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Simulator. The simulator used in the study was an automobile simulator that handles

like a midsize vehicle. The simulator had been validated by Leonard and Wierwille (1975)

with regard to driver-vehicle performance measures by comparing it with an actual

automobile. It had also been validated in regard to visual glance times for in-vehicle tasks

(Kurokawa and Wierwille, 1990).

The simulator was computer controlled and had a hydraulically powered moving-base

with four degrees of freedom. The physical motions included pitch, yaw, lateral movement,

. and longitudinal movement. The moving base was also capable of mimicking roadway

vibration. Time delays inherent in the motion platform over and above normal vehicle delays

were estimated to be 25 milliseconds (Dingus, Hardee, and Wierwille, 1985) and were

compensated for in the vehicle dynamics.

The roadway imaging system of the simulator provided an image of a two-lane

roadway with a center strip and side markings. Additionally, horizontal lines were displayed

to give the driver a feeling of looking at a roadway that was embedded in the horizontal

plane. This was important to further the impression that the simulated roadway continued

into the distance. A monochrome CRT was used to present the roadway image to the driver.

The CRT was viewed through a Fresnel lens. When the driver’s eyes were focused on the

simulated roadway a majority of their peripheral vision was used to view the screen. Also

present in the subject’s view was a simulated automobile hood that appeared at the correct

distance and was of the correct size.

An audio system was included in the design of the automobile simulator to provide

additional realism. Simulated sounds included tire noise, engine/drive train noise, tire

screech on severe braking, and tire squeal on severe cornering (Dingus,  Hardee, and

Wierwille, 1985).

Video recording equipment. A low light level camera (RCA TC1004-UOl)  was used

to continuously monitor a subject’s entire face, including eye movements. Since the camera
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could operate at very low light levels, it was unobtrusive. The video signal was passed through a VCR and

was then viewed by an experimenter on a Sanyo VM 45 12A monitor.

After all subjects completed the study the research team viewed the recorded images of the subjects

so that further analyses could be performed.

Linear potentiometer. An experimenter manually tracked the subject’s eyes by means of a linear

potentiometer. As the subject’s eyes closed, the potentiometer was pushed down so as to track the movement

of the eyelids. If the subject’s eyes were 100% closed the potentiometer was moved to the bottom of its range.

If the subject’s eyes were 0% closed the  potentiometer was moved to the top.

Steering wheel controls for subsidiary task. The simulator steering wheel had been altered so that it

included two push buttons on the cross member (thick spokes). One button was located on the left and the

other on the right. The right button was labeled “YES” and the left button was labeled “NO”. The subjects

responded to subsidiary task stimuli presented to them by pressing either the “YES” or “NO” button. The

responses were interfaced to a microcomputer for storage and analyses. This microcomputer was dedicated to

subsidiary-task response scoring and timing.

Win 486-33i microcomputer and analog-digital interface card . .  A majority of the data

gathering for this experiment was performed by another microcomputer (Win 486-33i) and interface card.

The interface card used was a National Instruments AT-MIO-16 card. This allowed for the collection of

analog data which was converted to digital format for compatibility with a microcomputer.

Yet another computer/processor was used to collect data for several physiological measures including

heart rate, eye closure, and EEG. The EEG measures included alpha, beta, and theta waves. The signals that

were received by the processor included signals generated from two electrodes placed over the occipital lobe

(EEG measures), an ear plethysmograph (heart rate), a linear potentiometer (eye closure), and various signals

from the automobile simulator. Output from the processor was then routed to the WIN 486-33i
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microcomputer, which was programmed in QuickBASIC to collect and store the appropriate data as

well as to perform on-line calculations.

The on-line calculations that were performed by the WIN microcomputer on the collected data

took place over each one-minute segment. These calculations resulted in the proportion of the time that

a subject’s eyes were closed 80% or more (PERCLOS), the mean-square of the eyelid closure signal

(EYEMEAS), mean alpha amplitude (MNALPHA), mean beta amplitude (MNBETA), mean theta

amplitude (MNTHETA), mean heart rate (MNHRT), and squared mean heart rate (MNSQHRT),

among others.

Electrodes and plethysmograph.   Biopotential skin electrodes were placed over the occipital

lobe and the lead wires were secured behind the driver/subject so that they could not be seen by the

subject. An athletic headband was placed around the subject’s head so that the electrodes were held-

securely to the subject’s head. As mentioned above, the EEG signals passed through a GRASS high

performance preamplifier and then to the processor. Once the signals passed through the processor they

were sampled by the AT-MIO-16 analog to digital card. After this stage the signal was ready for

measures computation.

The plethysmograph sensor was placed on the antihelix of the subject’s ear for  collection of

heart rate data. The plethysmograph’s lead wire was secured behind the subject so that it was

unobtrusive. To keep the sensor and lead wire in place the same athletic headband that was used for the

electrodes was used to hold them to the subject’s head. The signal obtained from the plethysmograph

passed through a Hewlett-Packard 7807C heart rate monitor. The signal then passed through the signal

processor and on to the AT-MIO-16 card before reaching the microcomputer.

Experimental Design

The experimental design involved a regression- discriminant analysis approach to data analysis.

Of the twelve subjects employed in the study, four were asked to simply drive the simulator, four

subjects carried out a secondary task every fifteen seconds while driving, and four subjects interacted

with the dashboard controls approximately every eight to ten minutes



while driving. In each group there were two randomly assigned females and two randomly

assigned males.

Several categories of measures were gathered during the study. Within each category

were various measures. Below is a list of the 33 collected measures grouped within the

appropriate category. (Each measure was initially calculated over each one-minute interval.)

Seat movement-related measures:

.  NMRMOVS:: The number of times the seatback sensor signals exceeded the threshold value

(corresponding to the number of times the driver went from a static position to

a moving position in the seat.)

l THRESMVS: The proportion of total time that the seat sensor signals exceeded the threshold

value (corresponding to the proportion of total time that the driver was moving

in the seat.)

Steering-related measures:

l NMRHOLD: The number of times the hold circuit output on the steering wheel exceeded a

l THRSHLD:

l STVELV:

l LGREV:

threshold value (corresponding to holding the steering wheel still for 0.4

second or longer). (Each time the steering wheel was held still for 0.4 second

or longer, the count was increased by one.)

The proportion of total time that the hold circuit on the steering wheel

exceeded a threshold value. (This proportion would begin to increase after 0.4

second of hold and would continue until the steering wheel was moved.)

The variance of steering velocity, where velocity was measured in degrees per

second.

The number of times that steering excursions exceeded 15 degrees after

steering velocity passed through zero.
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l MDREV:  The number of times that steering excursions exceeded 5 degrees (but less than

15 degrees) after steering velocity passed through zero.

l SMREV: The number of times that steering excursions exceeded 1 degree (but less than

5 degrees) after steering velocity passed through zero.

. STEXED: The proportion of time that steering velocity exceeded 125 degrees per second.

Lane-related measures:

.  LANDEV: The standard deviation of lateral position relative to the lane, where lane

position was measured in feet.

l LANVAR: The variance of the lateral position relative to the lane (square of LANDEV).

l LNMNSQ: The mean square of lane position in feet. (The “zero” position was defined as

that position occurring when the vehicle was centered in the lane.)

l LNRTDEV: The standard deviation of the time derivative of lane position (relative to the

lane) in feet per second.

l LNRTVAR: The variance of the time derivative of lane position (square of LNRTDEV).

. LANEX: The proportion of time that any part of the vehicle exceeded either lane

boundary.

. LNERRSQ: The mean square of the horizontal difference (in feet) between the outside edge

of the vehicle and the lane edge when the vehicle exceeded the lane. When the

vehicle did not exceed the lane, the contribution to the measure was zero.

Accelerometer-related measures:

l ACCDEV: The standard deviation of the smoothed output of a simulated lateral

accelerometer, where the output was first converted to feet per second-squared.

(Smoothing was accomplished with a single-pole low-pass filter having a

comer frequency at 7.25 Hz.)

80



. ACCVAR:  The variance of the smoothed output of the accelerometer. (square of

ACCDEV)

l INTACDEV: The standard deviation of the lateral velocity of the vehicle. (This signal was

obtained by passing the smoothed accelerometer signal through an additional

single-pole low-pass filter (leaking integrator) with a comer frequency of 0.004

Hz.. The unit of output was volts, in which one unit (volt) corresponds to a

smoothed lateral velocity of 73.34 feet per second.)

l INTACVAR: The variance of the lateral velocity of the vehicle (square of INTACDEV).

l ACEXEED: The proportion of time that the magnitude of lateral acceleration exceeded a

threshold of 0.3 g (9.66 ft/second2).

Heading-related measures:

. HPHDGDEV:

l HPHDGVAR:

l DSYAWDEV:

l DSYAWVAR:

The standard deviation of the high-pass heading signal, in degrees. (The

heading signal was passed through a single-pole high-pass filter with a

comer frequency of 0.0 16Hz.)

The variance of the high-pass heading signal (square of HPHDGDEV).

The standard deviation of the display yaw signal in degrees. (This signal

was the angular difference between vehicle heading and instantaneous

roadway tangent.)

The variance of the display yaw signal (square of DSYAWDEV).

Subsidiary (A/O) task-related measures: (Obtained from four of the driver subjects.)

. AOTIME: Mean response time to a correct response. Incorrect responses and no-

responses were specified as 12 seconds.

l NMWRONG: Mean number of incorrect responses. (Those instances in which there was no

response were not included in this measure.)

l NUMNR: Mean number of stimuli for which there was no response.
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Brain wave activity:

• MNALPHA: Mean alpha amplitude. (The detected amplitude of the output of a bandpass 

filter of the EEG having a passband from 8 to 12 Hz. The filter had a single 

complex pole pair with ζ = 0.1 and ωn = 61.6 rad. per second.)

• MNBETA: Mean beta amplitude. (The detected amplitude of the output of a bandpass 

filter of the EEG having a passband from 12 to 24 Hz. The filter had a single 

complex pole pair with ζ = 0.1 and ωn = 109 rad. per second.)

• MNTHETA: Mean theta amplitude. (The detected amplitude of the output of a bandpass 

filter of the EEG having a passband from 4 to 8 Hz. The filter had a single 

complex pole pair with ζ = 0.1 and ωn = 35.8 rad. per second.)

Heart rate measures:

• MNHRT: Mean heart rate. (The mean of the instantaneous output of the heart rate 

monitor in pulses per minute.)

• MNSQHRT: Mean-square heart rate. (The mean square of the instantaneous output of the 

heart rate monitor in pulses per minute.)

The data that were collected during this study were used to compute several definitional

measures of drowsiness. The drowsiness measures were:

• EYEMEAS: The mean square of the percentage of the subject’s eye closure. (Eyes wide 

open represented zero percent and eyes closed represented 100 percent.)

• PERCLOS: The proportion of the time that a subject’s eyes were closed 80% or more. 

(Again, eyes wide open represented zero percent and eyes closed represented 

100 percent.)

• AVEOBS: The average drowsiness rating of three observers for each one-minute interval.

(Scale extremes were zero for “not drowsy” and 100 for “extremely drowsy”. 

This measure was obtained after the experimental runs by viewing the 

videotapes of the subjects’ faces. A rating was obtained for each minute.)



. NEWDEF:  Definition developed by Ellsworth, Wreggit, and Wierwille (1993):

NEWDEF = 18.45722(PERCLOS) - 0.01569(MNALPHA) +

0.020173(MNTHETA) - 0.00549(MNBETA) + 0.000698(MNSQHRT).

(See page 66.)

. MASTER: The sum of the standardized values of AVEOBS, EYEMEAS, NEWDEF,

AND PERCLOS. (Standardization was performed after data gathering and

included all 6-minute average values of the given measure (e.g., PERCLOS)

from all subjects.

Procedure

Subject procedure. All subjects were involved in two sessions. The first was a

screening process that took place over the telephone. During the screening session all

potential subjects were asked questions in regard to driving habits, smoking habits, work

schedules, and health.

Subjects that passed the screening and were chosen for the study were told to carry

out their normal activities during the day on which the study was scheduled. It was

mandatory that all subjects awoke at approximately 7:00 A.M. Individuals who slept during

the day were not allowed to participate. At 6:00 P.M. a member of the experimenter team

met the subject at the subject’s residence. The experimenter took the subject to dinner at a

fast-food restaurant. Subjects were not allowed to intake sugar, caffeine, alcohol or any other

stimulant or depressant after 6:00 P.M. Subjects were allowed to smoke during or

immediately following dinner. By coincidence, no smokers participated in the study. After 

eating dinner, subjects were driven to the Vehicle Analysis and Simulation Lab.

The subject was given a Landholt C vision exam upon arrival at the laboratory. Each

subject was required to demonstrate corrected vision of at least 20/30. Once a subject passed

the vision test he or she was given an instruction sheet that gave further details concerning

the experiment. After reading the instructions the subject was asked if there were any

questions concerning the study. Once questions were answered by the experimenter the
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subject was asked to sign an informed consent form. While subjects waited for the study to

begin they were allowed to watch television, read, study, etc. An experimenter stayed with

the subject at all times except restroom breaks.

The experiment was run from approximately midnight to 3:00 A.M. At midnight,

two rested experimenters arrived to relieve the first member of the team. At that time the

subject was again asked if there were any questions concerning the study. After any

questions were answered, an experimenter placed the subject in the simulator and the

laboratory lights were dimmed. The subject practiced driving the simulator for

approximately five minutes. Once the five-minute practice session was complete the

laboratory lights were turned on and the subject was allowed to get out of the simulator for a

short time before beginning the experiment. This procedure was used to acclimatize the

subject to the simulator.

The subjects in the group that were to interact with’the dashboard controls were

shown the various controls and displays that they would have to use. Several practice

commands were given to the subjects to familiarize them with the controls. The subjects that

were in the auditory-search task group were given several practice commands as well. Any

questions that the subjects had at this time were answered by the experimenter.

The experimenters began applying physiological monitoring equipment to the subject

at approximately 12:15 A.M. Various equipment was turned on and the laboratory lights

were dimmed. Thereafter the subject was told to begin driving the simulator and accelerate

to 60 miles per hour. At the beginning of the driving session several more practice tasks

were given to the subjects who were to manipulate the dash board controls or perform the

secondary task. Several minutes after the subject began to drive and the experimenters felt

that the driver was maintaining 60 m.p.h. in a consistent manner, data collection was

initiated. The driving session in which data were collected lasted 2 l/2 hours.

After completion of the study the physiological monitoring equipment was

removed from the subject by an experimenter. The subject was assisted out of the
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simulator, paid for time spent, and debriefed. The subject was then driven home by one of

the experimenters.

Experimental task. The subject drove the simulated automobile as if it were an

actual car. The subject attempted to stay within the side markings of the simulated

roadway and in the appropriate lane. However, since this was a simulated roadway and

vehicle, the driver was not harmed if the “vehicle” left the roadway or went into the wrong

lane.

Four of the twelve subjects were asked to perform a secondary task. This task

involved an auditory presentation of various words. If the presented word contained an

“A” or “O” the subject was to press the button labeled “YES” located on the steering

wheel. If the presented word did not include an “A” or “O” the subject was to press the

button labeled “NO” located on the steering wheel. A new word was presented verbally

every 15 seconds by means of an audio track on a pre-recorded videotape. The letters “A”

and “O” were chosen as target letters because words could be found that include the letters

“A” and “O” and are easily distinguishable from other words.

Four of the twelve subjects were asked to manipulate various controls on the dash

board. These tasks involved following auditory commands to adjust radio controls, push

buttons, and operate vertical slide controls. One auditory command was given

approximately every eight to ten minutes. This dash board manipulation task was used

simply to distract the driver from the driving task as would happen in an actual on-the-.

road setting. This was important because the data would then include small amounts of

“noise” that would actually be seen in an automobile. The commands were fairly

infrequent so that the task of manipulating the controls by the subject would not create too

much of an arousal effect. Also, the frequency of control manipulation would be similar

to a person’s activity while driving on the road.
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Data Analysis Overview

All measures were first computed over one-minute intervals. Data manipulation

procedures were then undertaken to prepare data for statistical analyses’. Initially, the first

two minutes from all measures was deleted. This was done so that the data to be analyzed

did not include the time when subjects were suspected of “settling in” to the driving task.

Even though all subjects were given a practice driving session it was thought that in the first

two minutes of driving some subjects demonstrated inconsistencies concerning their driving

‘behavior, reactions, and physiological measures.

All independent measures were baselined using the average of the first ten minutes

(after the actual first two minutes had been deleted) of data. The average of the first ten

minutes of data was then subtracted from every subsequent data point within that measure.

Each data point consisted of a one-minute average of data. Aftercompletion of the

baselining procedure the data were averaged across six-minute intervals. The first two

intervals were five-minute averages to compensate for the earlier deletion of the first two

minutes of data. Six-minute averages had been shown previously to have higher correlation

values than either one-minute, two-minute, or four-minute averages (Ellsworth, Wreggit, and

Wierwille, 1993). See Figure 11 for a pictorial overview of the data manipulation procedure.

After data manipulation, multiple regression and discriminant analyses were performed on

the collected data to determine the best predictors of drowsiness (as previously defined).

The difference between multiple regression and discriminant analysis can be seen in

the methods used to choose the coefficients. In multiple regression the coefficients are

selected to minimize the sum of the squared differences between a person’s predicted and

actual criterion score. In discriminant analysis the coefficients are selected to maximize

correct classification. Also, the criterion variable for discriminant analysis is discrete rather

than continuous as with multiple regression. The main purpose of the multiple regression

and discriminant analyses was to find optimized combinations of variables that would best
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2 minutes: The first 2 minutes are deleted from all data

5 minutes: 5 minute average calculated

5 minutes: 5 minute average calculated

6 minutes: 6 minute average calculated

6 minutes: 6 minute average calculated

6 minutes: 6 minute average calculated

6 minutes: 6 minute average calculated

6-minute averages continued until the entire set of one-

minute segments (150 minutes) was manipulated. 148 total

minutes were used due to the deletion of the first two

minutes of data. Therefore, 25 data points were created

including two data points of 5-minute averages and twenty-

three data points of 6-minute  averages.

The first 10 minutes of

data used for baselining*

* Baselining is a procedure in which the initial ten minutes of data are averaged and then

subtracted from all subsequent one-minute segments. Baselining was carried out so that

data relative to the subject’s initial data values could be obtained.

Figure 11: Pre-Analysis Data Manipulation Procedures.
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predict “drowsiness” during driving sessions.

Multiple regression analyses were initially used for several reasons. First, it was

possible to track any portion of the data using multiple regression. Another important

consideration was the fact that the threshold value could be changed to any level after

application in the future. In other words, it would be possible to change the “sensitivity” of

an onboard detection system if algorithms developed through the use of multiple regression

were employed. Also, by using multiple regression, the experimenters were able to gain

valuable insight into which measures contributed consistently to the prediction of drowsiness.

For example, it was found that seat movement measures (NMRMOVS and THRESMVS) did

not significantly contribute to the prediction of drowsiness and therefore they were dropped

from further analyses. Finally, multiple regression was also used to determine which

measures would be used in the discriminant analyses.

Multiple regression was performed on all twelve subjects and separately on the four

subjects involved with the A/O auditory task. A block diagram of the algorithm development

procedure is shown in Figure 12. When performing the multiple regression analyses the B

weights of the various measures were first examined. This allowed for the removal of

measures that were linearly related. Measures that contained large, offsetting coefficients

were eliminated one at a time. (The equal and opposite coefficients demonstrated that the

measures contained approximately the same predictive information. Therefore one had to be

removed from the analysis.) Once any large, offsetting coefficients had been taken care of,

the elimination of nonsignificant measures (p > 0.05) began, starting with the measure having

the smallest F-ratio. Once the set of measures was reduced to four or five measures

(sometimes more or less), substitution of various measures back into the set began. From this

backward stepwise approach to multiple regression the best set of results were found.

Once the best multiple regression results were found for each dependent variable,

MNHRT and MNSQHRT were added to the final set of independent measures. The purpose
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Multiple regression
using all independent

measures in class

Removal of colinearity
and nonsignificant

independent measures

Reduction in number
of independent measures
without appreciable loss

of R value

Resubstitution of
independent measures
to produce improved R

FINAL REGRESSION
MODEL ALGORITHM

Single threshold discriminant
analysis using same

independent measures
as final regression model

Removal of colinearity
and nonsignificant

independent measures

Resubstitution of
independent measures
to produce improved R

FINAL SINGLE-THRESHOLD
DISCRIMINANT ANALYSIS

MODEL ALGORITHM

Removal of colinearity
and nonsignificant

independent measures

Dual threshold discriminant
analysis using same

independent measures
as final regression model

Resubstitution of
independent measures
to produce improved R

FINAL DUAL-THRESHOLD
DISCRIMINANT ANALYSIS

MODEL ALGORITHM

Figure 12: Block Diagram of the Main Steps in the Algorithm Development Procedure
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of this procedure was to examine whether heart rate would increase the accuracy of

drowsiness prediction. After adding the two heart rate variables it was found that some of the

significant measures found previously would become nonsignificant due to the inclusion of

the heart rate variables.

The measures that were used in the discriminant analyses were based on the measures

found to have the most predictive power in the multiple regression analyses. By using the

measures found to be significant predictors of drowsiness in multiple regression it was felt

that the discriminant analyses would begin with a strong foundation of measures. Since

multiple regression attempts to fit predicted and observed data as closely as possible, it was

hypothesized that these variables would contain integrity in a similar setting (other subjects

carrying out similar activities). In using the measures found to be significant in multiple

regression an attempt was made to bolster the future accuracy of the algorithms developed

with discriminant analyses.

The discriminant analyses that were carried out examined the predictability of two

distinct categories o f  wakefulness (awake and drowsy) and three distinct categories of

wakefulness (awake, questionable, and drowsy). As seen in Figure 13 the dependent

(definitional) variable PERCLOS has been graphed for each subject with threshold lines

drawn in. In this graphs, the first 25 points on the abscissa correspond to subject 1, the next

25 points correspond to subject 2, and so on. The upper and lower threshold levels that were

chosen for the three category discriminant analyses were based upon visual examination of

the five dependent variables in conjunction with the known driving performance of each

subject. For example, the experimenters rated subjects 5, 7, 9 and 10 as “alert” or

“moderately alert” and these subjects performed adequately while driving. Therefore, the

criterion line between “awake” and “questionable” was drawn so as to avoid the inclusion of

a great majority of these subjects’ data. The spikes in the dependent variable data that extend

into the “drowsy” category of the graphs correspond with poor driving performance.

Therefore, the criterion line between “questionable” and “drowsy” was drawn to include the
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spikes in the data that corresponded with poor driving performance. The placement of the

criterion line for the two category discriminant analyses was calculated by taking the average

of the upper and lower thresholds of the three category analyses. In other words, the

threshold is at the center of the “questionable” band.

Various drowsiness-detection algorithms were developed for possible implementation

in an on-board detection system. Each set of algorithms used a slightly different set of

measures so that loss of any measure does not mean failure of the detection system. The

concept of using several algorithms for the detection of drowsiness employs a “step-up” and

“step-down” approach. For example, if all signals are valid, the best available algorithm for

drowsiness detection would be used. However, if one of the sensors necessary for the best

algorithm is not providing a valid signal, the next best algorithm that does not require the

invalid signal would be used. This procedure uses the “step-down” approach. A “step-up”

procedure involves the use of newly validated signals. Table 8 shows the different sets of

measures that were used in the multiple regression analyses and the discriminant analyses

that make it possible to use the “step-up” and “step-down” process. (In the table,

“accelerometer” refers to lateral accelerometer.)
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Table 8: Sets of Measures Used in Multiple Regression and Discriminant Analyses for Each

Dependent Measure.

Independent Measures Dependent Measures

LNMNSQ, LANEX & LNERRSQ
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RESULTS

Two groups of data were analyzed. As explained earlier, the two groups included the

A/O auditory-task group that consisted of four subjects, and a group including all subjects. It

was found through the use of multiple regression and discriminant analyses that the use of

only four subjects resulted in higher R values and lower Wilk's Lambda scores than when

using data from twelve subjects. These results occur because an increase in the number of

subjects causes greater difficulty in fitting predicted and observed data. It must be noted here

that this was expected and must be kept in mind when reviewing the results of this study.

Multiple Regression

Table 9 is a summary of results that were attained from the multiple regression

analyses. Multiple regression tables and classification matrices associated with the bolded

cells in Table 9 are presented in Appendix A. The algorithms in Appendix A were chosen

because they represent typical algorithms that may be employed in a full-scale on-the-road

study. See Wreggit, Kim, and Wierwille (1993) for a complete set of results.

An examination of the average R scores across all sets of independent variables for

each of the five dependent variables gives a good idea of the relative predictive strengths of

the dependent variables. The results of the average R-score analysis seen below were

obtained by averaging the R values contained within each column of Table 9.

1. MASTER: Average R = 0.8775 across 11 sets.

2. PERCLOS: Average R = 0.8563 across 12 sets

3. AVEOBS: Average R = 0.8303 across 16 sets

4. EYEMEAS: Average R = 0.8154 across 9 sets

5. NEWDEF: Average R = 0.7523 across 16 sets

The number of sets used to calculate each average was determined by the number of

independent variable sets used to independently predict each dependent variable.
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Table 9: Summary Table of Multiple Regression Analyses Results Showing R Values.

Independent Measures Dependent Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

D Steering and Accelerometer
0.747 0.764 0.677 0.789 0.801

E Steering, Accelerometer, & HPHDGDEV/VAR
0.793 0.809 0.700 0.847 0.852

F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 0.826 0.837 0.731 0.872 0.886

G Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
0.824

s
0.757 0.872

s

H Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR 0.826 0.836

T
0.751

s s

I A/O Task Measures Only
0.761 0.768 0.660 0.810 0.822

J A/O Task, Steering, & Accelerometer Accel.
0.824 0.824

Accel.
0.740 0.836 0.876

K A/O Task, Steering, Accelerometer, &
HPHDGDEV/VAR. 0.917

Steering
0.855

s Accel.
0.868 0.903

L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, &
LNERRSQ

∆
0.874 0.768 0.875 0.903

M A/O Task, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 0.922

∆ ∆
0.902 0.936

N Heart, Steering, & Accelerometer
0.785 0.772 0.711

r r

O Heart, Steering, Accelerometer, & HPHDGDEV/VAR
0.813

r
0.761 0.851 0.854

P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 0.838

r
0.774 0.874

r

Q Heart, Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
0.816

r
0.802

r r

R Heart, Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

Lane
Rate
0.837

r steer/LnRT
0.797

s r

S A/O Task and Heart r r 0.774 r r

T A/O Task, Heart, Steering, & Accelerometer Accel.
0.837

r Accel.
0.810

r r

U A/O Task, Heart, Steering, Accelerometer, &
HPHDGDEV/VAR 0.918

r s Accel.
0.880 0.909

V A/O Task, Heart, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ

r r
0.823

r
0.910

A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

r ∆ ∆ r r

KEY:
s In regression analyses introduction of variable did not improve R value. See entry directly above .for

model with same R and fewer terms.
r Heart Measures did not improve regression as compared with non-heart equivalent. See corresponding

non-heart entry for model with same R value and fewer terms.
∆ A/O task measures did not improve regression as compared with non-A/O task measure equivalent. See

corresponding non-A/O task measure entry for model with same R value and fewer terms.
T A cell designated with an asterisk could have been given the s symbol. However, the asterisk denotes a

substantially changed algorithm in term of measures used.
NOTES: - Any measure specified in a cell was deleted because of nonsignificance.

- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysis is presented.
- Multiple regression tables and classification matrices associated with bolded cells can be seen
in Appendix A of this report.



The multiple regression procedure was carried out in several steps. Mean heart rate

and mean square heart rate measures were added to the best multiple regression sets to

determine whether the heart rate variables contributed to the prediction of drowsiness. A

general increase in R scores was seen with the addition of heart rate measures.

The addition of A/O task measures increased R values in comparison with results

from data that did not incorporate the A/O task. However it must be remembered that the

A/O task measures were collected using four subjects, thus somewhat inflating the R value

relative to the results seen when analyzing data from twelve subjects.

After completing some initial multiple regression analyses it was found that seat

movement measures did not contribute to the prediction of drowsiness. The seat movement

measures, NMRMOVS and THRESMVS, were then eliminated from further analyses.

Multiple regression analyses demonstrated that it was possible to track any portion of

data. As can be seen in Figure 14, predicted data tracks the observed PERCLOS data quite

accurately. The graphed tracking example resulting from multiple regression analysis has an

R value of 0.872 as seen in the third row of Table 9. The regressors used for the analyses in

row three include steering measures, accelerometer measures, LANDEVNAR, LNMNSQ,

LANEX, and LNERRSQ.

Figure 15 shows a classification matrix that was generated from a thresholded multiple

regression analysis of the dependent measure PERCLOS. The data that have been classified are

the same are those graphed in Figure 14. The thresholds that were used for the purpose of

classification in this case were the same as the thresholds used for the discriminant analysis

procedure (see Figure 13). Figure 15 shows classifications and misclassifications of three

categories of wakefulness. These categories include “Awake”, “Questionable”, and “Drowsy”.

The categories of wakefulness are presented along the left side of the table (observed) and

across the top of the table (predicted). As an example of how to interpret this table find the “18”

in the cell located under the predicted category of “Questionable” in the classification matrix.

This cell contains 18 misclassifications due to the fact that those 18 data points were
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Observed

Predicted

PERCLOS (R = 0.872).

Apparent Accuracy Rate (large misclassifications): 0.98

Apparent Accuracy Rate (all misclassifications): 0.79

Figure 15: Classification Matrix Generated From Multiple Regression Analysis of

PERCLOS Data. (Independent variables employed included Steering,

Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.) l
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classified as “Questionable” by the multiple regression equation but were actually in the

“Awake” category. A “large error” is defined as any misclassification in which the predicted

classification is two categories away from the observed (actual) classification. For example,

data within a cell predicted as “drowsy” that was actually “awake” has been missclassified

by two cells. The cells containing “184" , “21”, and “32” are correct classifications, or hits..
As stated earlier, when performing the multiple regression analyses the B weights of

various measures were first examined. By examining the B weights the experimenters were

able to reduce linear dependency between variables. However, B, the nonstandardized

numbers attained from multiple regression analyses, are the values that could be used for

further application. The B values are coeffkients that can be used to create a drowsy driver

detection algorithm.

Discriminant Analyses

The results of the discriminant analyses that were run corresponded, in general, with the

results attained from the multiple regression analyses. In other words, a high R value resulting

from multiple regression usually resulted in an accurate classification matrix. However, it was

found that in some instances several of the variables that significantly contributed to

drowsiness prediction with multiple regression were not significant with discriminant analysis.

The dropping out of previously significant prediction measures was most profound when the

set of variables being examined included lane measures or high pass heading measures.

Tables 10, 11, and 12 are summary tables of results obtained from the ‘discriminant

analyses. Table 10 shows APARs (apparent accuracy rates) for large classification errors.

Large errors are defined as misclassifications in which a prediction of “awake” is made when

the subject is actually “drowsy” or vice versa. More complete results of the discriminant

analyses can be seen in Wreggit, Kim, and Wierwille (1993).
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Table 10: Summary Table of Two Category Discriminant Analyses Results
 Showing APAR..

Independent Measures Dependent Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

D Steering and Accelerometer
84.0 83.7 81.3 85.0 82.7

E Steering, Accelerometer, & HPHDGDEV/VAR
84.7 84.3 81.7 89.7 85.7

F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 88.7 85.3 84.3 90.33 89.67

G Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
88.0

T
83.0

s

H Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR 89.0 85.0

T
83.7

I A/O Task Measures Only
87.0 84.0 83.0 85.0 86.0

J A/O Task, Steering, & Accelerometer Accel.
92.0 86.0

Accel.
88.0 88.0 92.0

K A/O Task, Steering, Accelerometer, &
HPHDGDEV/VAR.

Accel.
94.0

s Accel.
91.0

∆

L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, &
LNERRSQ

∆
87.0 89.0

∆

M A/O Task, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

∆
96.0 92.0

N Heart, Steering, & Accelerometer
85.7 83.7 82.67

O Heart, Steering, Accelerometer, & HPHDGDEV/VAR
87.0 83.0

r r

P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 89.3 85.7

r

Q Heart, Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
87.7

s

R Heart, Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

r steer/LnRT
84.0

S A/O Task and Heart
83.0

T A/O Task, Heart, Steering, & Accelerometer Accel.
92.0

Accel.
85.0

U A/O Task, Heart, Steering, Accelerometer, &
HPHDGDEV/VAR

r r r

V A/O Task, Heart, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ

r r

A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

KEY:
s In these discriminant analyses introduction of variable did not improve prediction value. See entry

directly above for model with same prediction value and fewer terms.
r Heart Measures did not improve prediction value as compared with non-heart equivalent. See

corresponding non-heart entry for model with same prediction value and fewer terms.
∆ A/O task measures did not improve prediction value as compared with non-A/O task measure equivalent.

See corresponding non-A/O task measure entry for model with same prediction value and fewer terms.
T A cell designated with an asterisk could have been given the s symbol. However, the asterisk denotes a

substantially changed algorithm in term of measures used.
NOTES: - Blank cells indicate that analysis was not computed because corresponding regression did not show

improvement in R value.
- Any measure specified in a cell was deleted because of nonsignificance.
- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysis is presented.
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Table 11: Summary Table of Three Category Discriminant Analyses Results Showing APAR
For All Classification Errors.

Independent Measures Dependent Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

D Steering and Accelerometer
72.7 80.7 74.0 78.3 77.7

E Steering, Accelerometer, & HPHDGDEV/VAR
73.0 81.0 73.3 81.3 80.3

F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 77.0 82.7 71.7 85.0 82.3

G Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
74.7 75.3

s

H Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR 78.3 83.0 73.0

I A/O Task Measures Only
81.0 82.0 72.0 79.0 80.0

J A/O Task, Steering, & Accelerometer
87.0 85.0

Accel.
89.0 77.0 85.0

K A/O Task, Steering, Accelerometer, &
HPHDGDEV/VAR.

Accel.
90.0

s ∆ Accel.
87.0

L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, &
LNERRSQ 86.0 79.0 82.0

∆

M A/O Task, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

∆
89.0 90.0

N Heart, Steering, & Accelerometer
72.7 79.0 75.0

O Heart, Steering, Accelerometer, & HPHDGDEV/VAR
73.0 76.3

r r

P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 78.3 76.7 83.7

Q Heart, Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
77.7

s

R Heart, Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

T
77.7

LnRT
77.3

S A/O Task and Heart
77.0

T A/O Task, Heart, Steering, & Accelerometer Accel.
85.0

Accel.
89.0

U A/O Task, Heart, Steering, Accelerometer, &
HPHDGDEV/VAR

r r r

V A/O Task, Heart, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 82.0

r
∆

A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

KEY:
s In these discriminant analyses introduction of variable did not improve prediction value. See entry

directly above for model with same prediction value and fewer terms.
r Heart Measures did not improve prediction value as compared with non-heart equivalent. See

corresponding non-heart entry for model with same prediction value and fewer terms.
∆ A/O task measures did not improve prediction value as compared with non-A/O task measure equivalent.

See corresponding non-A/O task measure entry for model with same prediction value and fewer terms.
T A cell designated with an asterisk could have been given the s symbol. However, the asterisk denotes a

substantially changed algorithm in term of measures used.
NOTES: - Blank cells indicate that analysis was not computed because corresponding regression did not show

improvement in R value.
- Any measure specified in a cell was deleted because of nonsignificance.
- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysis is presented.
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Table 12: Summary Table of Three Category Discriminant Analyses Results Showing APAR
for Large Classification Errors.

Independent Measures Dependent Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

D Steering and Accelerometer
93.3 87.0 91.7 94.0 95.0

E Steering, Accelerometer, & HPHDGDEV/VAR
94.33 88.3 91.3 96.3 96.7

F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 96.7 90.0 92.0 97.3 97.0

G Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
95.7 93.0

s

H Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

T
95.7 90.3

T
92.7

I A/O Task Measures Only
89.0 87.0 91.0 95.0 94.0

J A/O Task, Steering, & Accelerometer
93.0 90.0

Accel.
93.0

Accel.
96.0 99.0

K A/O Task, Steering, Accelerometer, &
HPHDGDEV/VAR.

Accel.
98.0

s ∆ Accel.
99.0

L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, &
LNERRSQ 93.0 100.0 94.0

∆

M A/O Task, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

∆
99.0 99.0

N Heart, Steering, & Accelerometer
94.3 86.3 93.00

O Heart, Steering, Accelerometer, & HPHDGDEV/VAR
95.3 93.7

r r

P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 96.0 94.7 96.7

Q Heart, Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR) 96.33

s

R Heart, Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

T
96.0

LnRT
95.0

S A/O Task and Heart
92.0

T A/O Task, Heart, Steering, & Accelerometer Accel.
94.0

Accel.
96.0

U A/O Task, Heart, Steering, Accelerometer, &
HPHDGDEV/VAR

r r r

V A/O Task, Heart, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 96.0

r
∆

A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

KEY:
s In these discriminant analyses introduction of variable did not improve prediction value. See entry

directly above for model with same prediction value and fewer terms.
r Heart Measures did not improve prediction value as compared with non-heart equivalent. See

corresponding non-heart entry for model with same prediction value and fewer terms.
∆ A/O task measures did not improve prediction value as compared with non-A/O task measure equivalent.

See corresponding non-A/O task measure entry for model with same prediction value and fewer terms.
T A cell designated with an asterisk could have been given the s symbol. However, the asterisk denotes a

substantially changed algorithm in term of measures used.
NOTES: - Blank cells indicate that analysis was not computed because corresponding regression did not show

improvement in R value.
- Any measure specified in a cell was deleted because of nonsignificance.
- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysis is presented.



Table 13 contains two columns of numbers. One columns consists of three-category

thresholded regression results and the other consists of three-category discriminant analysis

results. This table allows comparison of the results of the thresholded regression models with

corresponding three-category discriminant analysis results. When comparing these results it

can be seen that the gain in prediction accuracy from discriminant analyses when compared

with that of multiple regression is negligible. Two-category thresholded multiple regression

analyses were not carried out for comparison with the two-category discriminant analyses

because the results would have corresponded closely with the three-category results.
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Table 13: Comparison of Apparent Accuracy Rates for Thresholded Regression Models and

Corresponding Discriminant Analysis Models. (Comparisons are for the Steering,

Accelerometer, LANDEVNAR, LNMNSQ, LANEX, and LNERRSQ independent

measure cases).

Definitional (Dependent)

Measures

Type of Accuracy Regression Results

APAR (Large Errors) 0.957
AVEOBS

APAR (All Errors) 0.753

APAR (Large Errors) 0.937
EYEMEAS

APAR (Large Errors) 0.780

APAR (All Errors)
NEWDEF

APAR (All Errors)

APAR (Large Errors)
PERCLOS

APAR (All Errors)

APAR (Large Errors)
MASTER

APAR (All Errors)

AVERAGES OF
APAR (Large Errors)

ABOVE APAR (All Errors)

0.957

0.710

0.980

0.790

0.980

0.830

0.962

0.772

Three-Category

Discriminant Analyses

0.967

0.770

0.900

0.827

0.920

0.717

0.973

0.850

0.970

0.823

0.946

0.797
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DISCUSSION AND CONCLUSIONS 

In general, the five definitional (dependent) measures of drowsiness that were

employed in the algorithm development phase were reasonably predictable. Discriminant

analyses showed, in particular, that the number of large errors is relatively small. In fact, in a

few cases the number of large errors is as low as one or two per 100 cases. In addition, the

difference between discriminant analysis results and multiple regression results was quite

small in many cases and nonexistent in others.

Models Including Heart Measures Versus Models Not Including  Heart Measures

The potential gains are quite modest if it is assumed that we could secure a

plethysmograph to an automobile driver. When comparing heart and non-heart models in

Tables 10-12 (lines 1 through 5 versus 11 through 15) the number of open cells (cells

containing no R value or APAR number), cells containing squares, and cells containing solid

triangles in lines 11 through 15 demonstrates that in many cases there was no improvement

when heart rate measures were introduced. The R value of NEWDEF improved by

approximately 0.05, when heart measures are added. However, in most cases the addition of

the heart rate variables contributes little or nothing to the prediction accuracy of drowsiness.

On the whole, it is not worth encumbering the driver with a plethysmograph to obtain heart

rate measures for the slight improvement in the prediction of drowsiness.

Models Including A/O-Task Measures Versus Models Not Including A/O-Task Measures

Models in which A/O-task measures have been introduced produce relatively high

predictive values compared with non-A/O task measure results as seen in Tables 10 through

12. The number of large errors is in the range of 1% or less. Results of this nature suggest

that the A/O task does contribute to prediction accuracy. However, it must be recognized

that the A/O-task models are based on data from four subjects and therefore the models may

have higher R values and APAR values because it is easier to fit a model to four subjects than

to twelve subjects.
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Overview -

We conclude on the basis of Table 13 that regression models, after thresholding, are

capable of producing comparable accuracy to three-category (two-threshold) discriminant

analysis models. In fact, large errors are slightly fewer in multiple regression than in

discriminant analysis. However, the total number of errors is slightly greater for multiple

regression than for discriminant analysis.

While the models developed in this study are relatively accurate, the fact remains that

they will produce some false alarms (a false alarm is defined as an outcome in which an alert

driver is diagnosed as drowsy). The best estimate of the false alarm rate for drivers who have

been sleep deprived is that given by the large error APARs that appear in Table 13. The

results suggest that error rates of 2% to 3% are likely to occur. Error rates are of course

dependent on the proportion of time that drivers are alert; questionable, and drowsy. (Error

rates for alert drivers are likely to be lower because they would be less likely to produce

model outputs near threshold.)

The fact that a finite false alarm rate remains suggests that a two-stage detection

algorithm procedure should be used. In the first stage, the A/O task would not be performed

and an algorithm appearing in rows one through five of Table 9 would be used. Once

threshold is exceeded, indicating potential drowsiness, the driver would be asked to perform

the A/O task. If the A/O-task algorithm then produced a value above threshold the driver

would be assumed to be drowsy. A two-step algorithm of this type might produce

sufficiently low false alarm rates so as to be acceptable for applications.

The first stage of detection involves driver-vehicle performance measures only. It is

suggested that the first and third rows of Table 9 represent the most viable algorithms. The

third row assumes the availability of a lane track and provides better accuracy than row one.

However, if a lane track is not available the first row could be used. Algorithms in the first

row of Table 9 include steering and lateral accelerometer measures. These two measures are
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assumed to be nearly 100% reliable and should be used exclusively if a valid lane track is not

available.

With regard to the predictability of the definitional measures of drowsiness, results

demonstrate that PERCLOS and MASTER are most predictable, followed by EYEMEAS,

AVEOBS, and NEWDEF. These results are best seen in Table 13 but also show up in Tables

9, 10, 11, and 12. In general, the results suggest that the algorithms developed by regression

and using a threshold with a two stage process should provide a viable, accurate, and low

false alarm system of detection for drowsy drivers.

On the basis of Table 13 it would be concluded that a two-category regression model

would have comparable accuracy to a two-category discriminant analysis model. Because of

the comparable accuracy obtainable for regression models it is recommended that only

regression models with thresholds be implemented in future validation and full scale studies.

The advantage of using thresholded regression models is that the threshold(s) can be adjusted

for sensitivity in operational settings. Discriminant analysis models, on the other hand, must

be recomputed for each new setting of threshold. This would involve an on-line optimization

process.
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Chapter Five

Validation of Previously-Developed Drowsy-Driver Detection Algorithms

(This chapter represents an extended summary of work reported in the Fifth

Semiannual Research Report, dated April 15, 1994, and referred to as

Wreggit, Kirn, and Wierwille, 1994)
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INTRODUCTION

The validation experiment was a multipurpose experiment, designed not only for

validation, but also for the examination of several additional research issues. Chapter Six

describes these additional issues, including corresponding analyses and results. The study

described in the present chapter was directed at determining how well previously developed

drowsy-driver detection algorithms (Wreggit, Kirn, and Wierwille, 1993) perform when they

were applied to new data. Numerous algorithms were developed and have been previously

reported (Wreggit, Kirn, and Wierwille, 1993). While estimates of algorithm accuracy were

obtained along with the development of the algorithms, it was not certain that such estimates

could be relied upon for new groups of drivers operating under similar conditions. Therefore,

this study focuses on the application of typical algorithms to a new data set, to obtain a

“validated” estimate of accuracy. Accordingly, this experiment was conducted having the

primary purpose of algorithm validation, that is, determining algorithm classification

accuracy for data from a new set of driver-subjects. Accuracy of typical algorithms applied

to the new data set was determined through the use of multiple regression and classification

matrices. The accuracy of the classification matrices constructed during the algorithm

development study was compared with the accuracy of the classification matrices constructed

in the validation study. A comparison of resulting R values from the two studies was also

undertaken

Sleep deprived subjects drove an automobile simulator for approximately 2 l/2 hours

during the night. The driving time and duration were approximately the same as was

experienced by subjects in the algorithm development study.

In the algorithm development study four subjects did nothing but drive, another four

performed occasional tasks as they drove, and another four performed a subsidiary task,

called an A/O task, as they drove. The A/O task consisted of auditory presentation of words.

The subjects responded by means of push-buttons labeled YES and NO, depending on

whether or not the presented word contained the target letters A or O. In the validation
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experiment, all driver-subjects drove with cruise control for two quartiles of the run and

without cruise control for the other two quartiles. They also performed the A/O task for two

quartiles and did not perform the task during the other two quartiles. During the validation

experiment the subjects did not interact with the dash board controls. Each driver/subject

thus experienced four quartiles in which all combinations of cruise/no cruise and A/O task/no

A/O task were presented. Order of presentation was counterbalanced across subjects. The

reasons for using a slightly modified design in the validation experiment were:

1. It was desired to determine algorithm accuracy under similar, but not identical

conditions, thereby “simulating” the likely conditions of an application, and

2. The data could be used for additional purposes, such as determining the effects of

cruise control on algorithm detection accuracy.

.
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METHOD

Subjects

In this validation study, data were collected from twelve subjects, as was the case for

data collection for the algorithm development study (Wreggit, Kirn, and Wierwille, 1993).

The subject population was located in the Blacksburg, Virginia area and the same screening

procedures were used as the previous phase of the study. However, eight males and four

females were used during the validation study instead of six males and six females. The use

of twice as many males as females was determined to be a more accurate representation of

the high risk driver population (Knipling and Wierwille, 1993). The subjects ranged in age

from 18 to 47. The subjects were paid according to the hourly rate of the previous phase of

the study and were involved with the experiment for approximately the same amount of time.

During data collection one subject stayed completely awake and had a heart rate of 90

beats per minute for the entire run. It was suspected by the experimenters that this subject

may have taken caffeine pills or some other form of stimulant during a trip to the rest room

prior to the driving session. This subject’s data were not used. While running another subject

the EEG electrodes loosened late in the run. Examination of the data led the experimenters to

suspect that the EEG data had been corrupted and therefore, the subject’s data were not used.

The two problem subjects were replaced with two additional subjects, resulting in a total of

twelve complete data sets.

Apparatus

The apparatus employed was identical to that of the previous phase of the study with

one exception.

Simulator. The simulator was equipped with a cruise control system that allowed the

experimenters to place the simulator in a cruise-control state which locked the velocity of the

simulated automobile at 60 miles per hour. The cruise control could also be switched off by

the experimenters, at which time it was necessary for the driver to maintain the speed of the

automobile using the accelerator pedal.
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Design

The experimental design involved a regression approach to data analysis. All drivers

were subjected to the following conditions during driving: with cruise control/with task, with

cruise control/without task, without cruise control/with task, and without cruise

control/without task. The “task” in this case refers to the A/O subsidiary task described

previously in the algorithm development chapter of this report. Each subject performed the

A/O task for one-half of the entire run. Therefore, it was necessary for each subject to

perform the A/O task for 72 minutes. While the A/O task performance measures were being

collected, all other measures were being collected simultaneously. Subjects received counter

balanced combinations of the conditions. Each condition lasted 36 minutes. The subjects did

not interact with the instrument panel as was done by some subjects in the algorithm

development phase.

The performance and physiological measures that were gathered during the study were

the same as the performance and physiological measures included in the previously

developed drowsiness detection algorithms.

Procedure

All subjects underwent the same pre-driving procedures as the subjects in the

development phase and stayed at the Vehicle Analysis and Simulation Lab for approximately

the same amount of time.

Experimental task. All subjects drove the simulated automobile as if it were an

actual car. All subjects performed the same secondary (A/O) task that was employed

during the algorithm development phase. In addition, a cruise control condition was

incorporated into the driving task. When the cruise control was engaged the simulated

automobile maintained 60 miles per hour. When the cruise control was not engaged the

subject was asked to maintain approximately 60 miles per hour. Subjects drove for a total

of 156 minutes.
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Data Analysis Overview

All measures were first computed over one-minute intervals. Data manipulation

procedures were then undertaken to prepare data for statistical analyses. Initially, the first

two minutes from all measures were deleted. This was done so that the data to be analyzed

did not include the time when subjects were “settling in” to the driving task. This procedure

was consistent with the algorithm development phase.

All independent measures were baselined using the average of the first ten minutes of

data (after the actual first two minutes had been deleted). The average of the first ten minutes

of data was then subtracted from every subsequent data point within that measure. Each data

point consisted of a one-minute average of data. After completion of the baselining

procedure the ten minutes of data used for the baselining average were discarded. Following

the baselining procedure the data were averaged across six-minute intervals. See Figure 16

for a pictorial overview of the data manipulation procedure.

As seen in Figure 17 the dependent (definitional) variable PERCLOS was graphed for

each subject with threshold lines drawn. The threshold lines were developed during the

algorithm development study and were placed over the new data set. In this graph, the first

24 points on the abscissa correspond to subject 1, the next 24 points correspond to subject 2,

and so on. The corresponding graphs for AVEOBS, EYEMEAS, NEWDEF, and MASTER

can be seen in Wreggit, Kim, and Wierwille (1994).

After data manipulation, previously developed drowsiness detection algorithms were

applied to the new data set. Once algorithm outputs (predicted values) were calculated, a

regression analysis was run between those values and the applicable definitional measure

(observed) values. After completion of this procedure a comparison between the R values

attained from the original data and new data-was carried out. The algorithms that were tested

can be seen highlighted in Table 14. (Those with gray background were not tested.)
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2 minutes: The first 2 minutes are deleted from all data

First 10 minutes after deletion of 2 previous minutes

10 minute average calculated

6 minutes: average of 6 one-minute measure values

6 minutes: average of 6 one-minute measure values

6 minutes: average of 6 one-minute measure values

6 minutes: average of 6 one-minute measure values’

6 minutes: average of 6 one-minute measure values

6-minute averages continued until the entire set of one-

minute segments (144 minutes) was manipulated. 156 total

minutes were used due to the deletion of the first 12

minutes of data. Therefore, 24 data points of 6-minute

averages were created.

10 minutes used for baselining*

10 minutes discarded after baseline

.

* Baselining is a procedure in which the initial ten minutes of data are averaged and then

subtracted from all subsequent one-minute segments. Baselining was carried out so that

data relative to the subject’s initial data values could be obtained.

Figure 16: Pre-Analysis Data Manipulation Procedures.
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Table 14: Summary Table of Multiple Regression Results (Calculated in the Development
Phase) Showing Algorithms Used for Validation.

Independent Measures Dependent Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

D Steering and Accelerometer
0.747 0.764 0.677 0.789 0.801

E Steering, Accelerometer, & HPHDGDEV/VAR
0.793 0.809 0.700 0.847 0.852

F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 0.826 0.837 0.731 0.872 0.886

G Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR) 0.824

s
0.757 0.872

s

H Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

T
0.826 0.836

T
0.751

s s

I A/O Task Measures Only
0.761 0.768 0.660 0.810 0.822

J A/O Task, Steering, & Accelerometer Accel.
0.824 0.824

Accel.
0.740 0.836 0.876

K A/O Task, Steering, Accelerometer, &
HPHDGDEV/VAR. 0.917

Steering
0.855

s Accel.
0.868 0.903

L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, &
LNERRSQ

∆
0.874 0.768 0.875 0.903

M A/O Task, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 0.922

∆ ∆
0.902 0.936

N Heart, Steering, & Accelerometer
0.785 0.772 0.711

r r

O Heart, Steering, Accelerometer, & HPHDGDEV/VAR
0.813

r
0.761 0.851 0.854

P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 0.838

r
0.774 0.824

r

Q Heart, Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

T
0.826

r
0.802

r r

R Heart, Steering, Accelerometer, all lane measures, &
DSYAWDEV/VAR

Lane Rate
0.837

r
0.797

s r

S A/O Task and Heart r r
0.774

r r

T A/O Task, Heart, Steering, & Accelerometer Accel.
0.837

r
0.810

r r

U A/O Task, Heart, Steering, Accelerometer, &
HPHDGDEV/VAR 0.918

r s Accel.
0.880 0.909

V A/O Task, Heart, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ

r r
0.823

r
0.910

A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ

r ∆ ∆∆ r r

KEY:
s In regression analyses introduction of variable did not improve R value. See entry directly above for

model with same R and fewer terms.
r Heart Measures did not improve regression as compared with non-heart equivalent. See corresponding

non-heart entry for model with same R value and fewer terms.
∆ A/O task measures did not improve regression as compared with non-A/O task measure equivalent. See

corresponding non-A/O task measure entry for model with same R value and fewer terms.
T A cell designated with an asterisk could have been given the s symbol. However, the asterisk denotes a

substantially changed algorithm in term of measures used.
NOTES: - Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in

which analysis is presented.
- Cells that are not grayed-out indicate algorithms that were validated by applying new data.



The comparison between the R values attained from the original data and the new data

was accomplished using t-test and analysis of variance procedures. Multiple R values were

used as data for these comparisons.

The algorithms that were chosen for validation were selected for several reasons. It

was desirable for the R values to be relatively high and for the measures within the

algorithms to be attainable in anbn-the-road vehicle. Also, it was necessary to choose

algorithms that could be employed in a step-up, step-down procedure. For example, if all

incoming signals to be used in an algorithm are valid, the best available algorithm for

drowsiness detection would be used. However, if one of the sensors necessary for the best

algorithm is not providing a valid signal, the next best algorithm that does not require the

invalid signal would be used.
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VALIDATION RESULTS:

DRIVER-VEHICLE PERFORMANCE MEASURES ONLY

This section describes the validation process for algorithms using driver-vehicle

performance measures only. During the experimental runs there were intervals during which

the A/O task was performed and there were intervals during which the A/O task was not

performed. Similarly, there were intervals during which the cruise control was engaged and

during which it was not engaged. Throughout these various intervals, driver-vehicle

performance measures were computed. This section reports on the validation results using

the driver-vehicle performance measures only. That is, it does not include measures taken

from the A/O task itself and it does not include any attempt to include forward speed in

algorithm validation. The term “all-data” indicates that performance data are included from

all 156 minutes of each driver’s data run, regardless of whether or not the A/O task was being

performed and regardless of whether or not the simulated vehicle was in cruise. When

specific sections of the data runs are referred to they are so designated. For example, the

section of the run in which the A/O task was being performed and cruise was not engaged is

referred to as “With Task, W/O Cruise.”

Application of Algorithms to New Data

Table 15 is a summary of 1) results that were attained from multiple regression analyses

of the original (algorithm development) data and 2) the correlation between new observed data

and the algorithm output when the algorithm was applied to new data. The R values attained

from the original data set are included in this table so that easy comparison between R values

can be made. There was no general decrease in predictive power of the algorithms when

applied to the new data t(9) = 0.24, p > 0.05. The average R values of the original and new

data can be seen graphically in Figure 18.

The new data were divided into four categories, including combinations of cruise

control and A/O secondary task so that the effects of cruise control and A/O task could be
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Table 15: R Values From Multiple Regression Analyses of Original Data and R Values

Achieved After Application of Algorithms to New Data.

Independent Measures

D Steering and
Accelerometer

Steering,
Accelerometer,

F LANDEVNAR,
LNMNSQ
LANEX,

& LNERRSQ

AVEOBS
(original)

0.747

Algorithm
Dla

(new)
0.727

(original)
0.826

Algorithm
F1a

(new)
0.570

EYEMEAS
(original)

0.764

Algorithm
D2a

(new)
0.777

(original)
0.837

Algorithm
F2a

(new)
0.838

Dependent Measures
NEWDEF
(original)

0.677

Algorithm
D3a

(new)
0.746

(original)
0.731

Algorithm
F3a

(new)
0.819

PERCLOS
(original)

0.789

Algorithm
D4a

(new)
0.800

(original)
0.872

Algorithm
F4a

(new)
0.862

MASTER
(original)

0.801

Algorithm
D5a

(new)
0.837

(original)
0.886

Algorithm
F5a

(new)
0.885

NOTES: Letters in left column indicate appendices containing detailed analyses on original
data set (Wreggit, Kim, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table
within a given appendix (Wreggit, Kim, and Wierwille, 1994).

Classification matrices were created for the highlighted (bolded) R values
(Wierwille, Kim, and Wreggit, 1994). (Also see Appendix A.)
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examined (Figure 18). A 2 x 2 within subjects analysis of variance was performed to test for

the effects of cruise control and A/O task performance on R values. No significant main

effects were seen (Cruise Control: E( 1, 9) = 0.177, p > 0.05, A/O Task: F( 1, 9) = 0.129, p >

0.05). However, a significant cruise control by A/O task interaction was indicated by the

results of the analysis of variance F(1,9) = 10.67, p < 0.01. To determine how the groups

differed, a Tukey. HSD test was used. The results of the post hoc test showed that only the

Without Task/with Cruise condition and the With Task/With Cruise condition were

significantly different from one another at the a = 0.05 level. The differences between the

other pairs of conditions were not significant at the a = 0.05 level.

Graphing the new observed data (definitional measure values) and the new predicted

data (from application of algorithms) demonstrated that it was possible to track any portion

of the new data with the previously developed detection algorithms. In Figure 19, predicted

data tracks the observed PERCLOS data quite accurately. Corresponding graphs for

AVEOBS, EYEMEAS, NEWDEF, and MASTER can be seen in Wreggit, Kim, and

Wierwille (1993).

Figure 20 shows typical classification matrices that were generated from a

thresholded multiple regression analysis of the definitional measure PERCLOS. The upper

matrix shows classified original data (algorithm output) and the lower matrix shows

classified new data (algorithm output). The data that were classified are the same as those

graphed in Figure 19. The thresholds that were used for the purpose of classification were

the same as those produced during the algorithm development phase. The thresholds for

PERCLOS are illustrated in Figure 17. Table 16 is a summary of the apparent accuracy rates

generated from the various classification matrices. This table shows that the difference

between the apparent accuracy rates of original and new data were negligible. See Wreggit,

Kirn, and Wierwille (1994) for the corresponding classification matrices.

Regression lines were drawn using the bolded original R values seen in Table 15 and

the corresponding APAR values of the new data in Table 16. The two plots give a general
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Predicted

Original

Observed

PERCLOS (R Value = 0.789)
Apparent Accuracy Rate (large misclassifications): 0.987
Apparent Accuracy Rate (all misclassifications): 0.757

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm D4a. (Independent variables employed included Steering and
Accelerometer.)

New

Observed

Predicted

Group % Correct

Awake 79.32

Awake Questionable Drowsy

188 40 9 

Questionable 30.00 8 6 6

Drowsy 90.32 1 2 28

Total 77.08 197 48 43

PERCLOS (R Value = 0.800)
Apparent Accuracy Rate (large misclassifications): 0.965
Apparent Accuracy Rate (all misclassifications): 0.771

Algorithm D4a  Applied to New Data and Compared with New Observed PERCLOS Data

Figure 20: Classification Matrices Showing Accuracy of Algorithm D4a When Applied to

Original Data (Upper) and New Data (Lower)
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Table 16: APAR Summary Table Generated from Classification Matrices of Original and New

Data -- Including All Misclassifications and Large Misclassifications (APAR values

correspond to R values in Table 15).

Independent
Measures

Dependent Measures

AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

D

Steering and

Acceleromete

r

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

F

Steering,

Accelerometer,

LANDEV/VAR,

LNMNSQ,

LANEX, &

LNERRSQ

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

(original)

Large 0.980

All 0.773

Algorithm

D5a

(new)

NOTES: Letters in left column indicate appendices containing detailed analyses on original
data set (Wreggit, Kirn, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table
within a given appendix (Wreggit, Kirn, and Wierwille, 1994). (Also see
Appendix A.)



idea of what APAR value can be achieved given certain drowsiness prediction R values for

twelve subjects. In other words, if an algorithm based on data from twelve subjects is

developed, it can be expected to produce APAR values in a validation study as provided by

the regression lines in Figure 21. The reader is cautioned that the correlation coefficients

associated with the data are not significant (p > 0.05) (probably as a result of small sample

size), and therefore the prediction capabilities provided by Figure 2 1 are indicative and not

conclusive.
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VALIDATION RESULTS:

INCLUSION OF A/O TASK PERFORMANCE MEASURES

Models Containing A/O Task Performance Measures

This section contains the results of validation tests that include A/O task performance

measures. In some cases these measures were used by themselves in developed algorithms

and in other cases they were used in combination with driver-vehicle performance measures.

Since the A/O task was performed during only half of each subject’s data run, the data base

used in this section is half the size of that used in the previous section.

Application of Algorithms (Employing A/O Task Measures) to New Data

As seen in Figure 22 the dependent (definitional) variable PERCLOS was re-graphed

to include only the segments of time in which the subjects performed the A/O task. The

threshold lines in the figure were developed during the algorithm development phase of the

study and are the same as those seen in Figures 13 and 17. In the graphs, the first 12 points on

the abscissa correspond to subject 1, the next 12 points correspond to subject 2, and so on.

The corresponding graphs for AVEOBS, EYEMEAS, NEWDEF, and MASTER can be seen

in Wreggit, Kirn, and Wierwille (1994).

Table 17 is similar to Table 16 in that is contains a description of the algorithms that

were tested on the new data. However, Table 17 contains the original R values (those

associated with application of the algorithms to the original data set) and new R values (those

associated with application of the algorithms to the new data set) for the algorithms containing

A/O data. The table also shows the appendices in which the algorithms were presented

(Wreggit, Kim, and Wierwille, 1993).

Table 17 shows that there was a general decrease in predictive power of the algorithms

when applied to the new A/O data (average R value = 0.606) as compared with the original

data (average R value = 0.809) t(7) = 6.21, p < 0.01. This result is graphed in Figure 23. The

figure also shows the effects of cruise control on the new R values. When cruise control was
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Figure 22: PERCLOS Data With Upper and Lower Criterion Lines (New Data During A/O

Task).
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Table 17: R Values From Multiple Regression Analyses of Original A/O Data and R Values
Achieved After Algorithms Were Applied to New A/O Data.

Independent
Measures

Dependent Measures

AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

I A/O Task
Measures Only

(original)
0.761

Algorithm
I1a

(new)
0.595

(original)
0.768

Algorithm
I2a

(new)
0.570

(original)
0.660

Algorithm
I3a

(new)
0.422

(original)
0.810

Algorithm
I4a

(new)
0.447

(original)
0.822

Algorithm
I5a

(new)
0.570

J
A/O Task,
Steering, &
Accelerometer

------------- ------------- -------------

(original)
0.836

Algorithm
J4a

(new)
0.599

-------------

L

A/O Task,
LANDEV/VA
R, LNMNSQ,
LANEX, &
LNERRSQ

------------- ------------- -------------

(original)
0.875

Algorithm
L3a

(new)
0.796

-------------

M

A/O Task,
Steering,
Accelerometer,
LANDEV/VA
R, LNMNSQ,
LANEX, &
LNERRSQ

------------- ------------- ------------- -------------

(original)
0.936

Algorithm
M3a

(new)
0.845

NOTES: Letters in left column indicate appendices containing detailed analyses on original data set
Wreggit, Kirn, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table
within a given appendix (Wreggit, Kirn, and Wierwille, 1994).

Classification matrices were created for the highlighted (bolded) R values (Wreggit,
Kirn, and Wierwille, 1994). (Also see Appendix A for classification matrices
and regression summaries corresponding to algorithms 14a, J4a, L3a, and M3a.)





engaged, the new R values increased significantly (from an average of 0.549 (when not

engaged) to an average of 0.677 (when engaged); t(7) = 2.50, p < 0.05.

To obtain a better understanding of drowsiness prediction using the new data. graphical

comparisons were made between the definitional measures and the algorithm outputs applied

to new data. Figure 24 shows a scatter plot of PERCLOS and algorithm J4a. As can be seen,

the algorithm seems to do a reasonable job of tracking the variations in observed

(definitional) measures, even though there are some obvious discrepancies. The

corresponding graphs for AVEOBS, EYEMEAS, NEWDEF, and MASTER can be seen in

Wreggit, Kim, and Wierwille (l994).

Figure 25 shows typical classification matrices that were generated from a thresholded .

multiple regression analysis of the definitional measure PERCLOS. The upper matrix shows

classified original data (algorithm output) and the lower matrix shows classified new data

(algorithm output). The data that were classified are the same as those graphed in Figure 24.

The thresholds for PERCLOS are illustrated in Figure 22.

Table 18 is a summary of the apparent accuracy rates generated from the various

classification matrices (a complete set of the developed matrices can be seen in Wreggit,

Kim, and Wierwille, 1994). In general, the number of misclassifications appears to be

smaller than the R values would seem to indicate.

Finally, regression lines were drawn using the original R values shown in Table 17 and

the corresponding APAR values of the new data in Table 18. The regression lines are shown

in Figure 26. The two plots give a general idea of the APAR value that can be achieved

given certain drowsiness prediction R values. The reader is cautioned that the correlation

coefficients associated with the data are not significant (p > 0.05), and therefore the

prediction capabilities provided by Figure 26 are indicative and not conclusive. (Again, the

probable reason for nonsignificance is sample size.)
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Predicted

Original

Observed

.

PERCLOS (R Value = 0.836)
Apparent Accuracy Rate (large misclassifications): 0.970
Apparent Accuracy Rate (all misclassifications): 0.790

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm J4a. (Independent variables employed included A/O Task,
Steering, and Accelerometer.)

Predicted

New

Observed

PERCLOS (R Value = 0.599)
Apparent Accuracy Rate (large misclassifications): 0.958
Apparent Accuracy Rate (all misclassifications): 0.833

Algorithm J4a Applied to New Data and Compared with New Observed PERCLOS Data

Figure 25: Classification Matrices Showing, Accuracy of Algorithm J4a When Applied to

Original Data (Upper) and New Data (Lower)
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Table 18: APAR Summary Table Generated from Classification Matrices of Original and New
A/O Data -- Including All Misclassifications and Large Misclassifications (APAR
values correspond to R values in Table 17).

Independent
Measures

Dependent Measures

AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

I
A/O Task
Measures
Only

Algorithm I1a

(new)
Large 0.931
All 0.729

Algorithm I1a

(new)
Large 0.910
All 0.840

Algorithm I1a

(new)
Large 0.917
All 0.778

Algorithm I1a

(new)
Large 0.931
All 0.847

Algorithm I1a

(new)
Large 0.896
All 0.799

J
A/O Task,
Steering, &
Accelerometer

------------- ------------- -------------

(original)
Large 0.970
All 0.790

Algorithm J4a

(new)
Large 0.958
All 0.833

-------------

L

A/O Task,
LANDEV/VA
R, LNMNSQ,
LANEX, &
LNERRSQ

------------- ------------- -------------

Algorithm
L3a

(new)
Large 0.979
All 0.868

-------------

M

A/O Task,
Steering,
Accelerometer,
LANDEV/VA
R, LNMNSQ,
LANEX, &
LNERRSQ

------------- ------------- ------------- -------------

(original)
Large 1.000
All 0.850

Algorithm M3a

(new)
Large 0.944
All 0.799

NOTES: Letters in left column indicate appendices containing detailed analyses on original data set
Wreggit, Kirn, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table
within a given appendix (Wreggit, Kirn, and Wierwille, 1994).

See Appendix A for classification matrices and regression summaries corresponding
to algorithms 14a, J4a, L3a, and M3a.





DISCUSSION AND CONCLUSIONS OF VALIDATION PHASE
.

rithms Using Driver-Vehicle Performance Measures

When choosing the algorithms to validate, it was important that the component

measures were very reliable and attainable in an on-the-road situation. The algorithms

located in Appendices D and F (Wreggit, Kirn, and Wierwille, 1993) were chosen for the

purpose of validation since they contained both reliable and probably attainable measures.

Another important aspect of the validated models is that their use allows for a step-up,

step-down detection procedure. Some detection algorithms employed steering and lateral

accelerometer measures and another set of detection algorithms employed steering, lateral

accelerometer, and lane-related measures. Therefore, loss of a lane-related measure does not

cause failure of the detection system. Rather, the system simply “steps-down” to a model

that does not contain lane-related measures. This would be the case if one of the sensors

necessary for the best algorithm did not provide a valid signal (i.e. lane sensors). A “step-up”

procedure involves the use of newly validated signals (i.e. lane sensors pick up valid signal

from the road).

The average R values achieved after application of drowsiness detection algorithms to

new data were found to have no significant loss in drowsiness prediction compared with the

original data upon which the algorithms were developed. Drowsiness classifications were

accomplished with only small percentages of error. The algorithms that were validated using

the driver-vehicle performance measures were found to be robust, in that no significant loss

in drowsiness prediction was observed when the detection algorithms were applied to new

data. This is an extremely important finding.

The Effect of Cruise Control and A/O Task on Detection Rate of Driver Performance

Measure Algorithms. The detection algorithms from Appendices D and F (Wreggit, Kim,

and Wierwille, 1994) were applied to the segments in time in which driver/subjects were

under a cruise control condition combined with the A/O secondary task. It was found that

when cruise control was engaged and the task was not being performed, the average
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drowsiness prediction R value was higher than when cruise control was engaged and the

secondary task was being performed. The higher average R value for the Without Task/With

Cruise condition is attributed to the fact that this condition is the most boring. The drivers

did not have to monitor speed or interact with the push buttons mounted on the steering

wheel while answering “yes” or “no” with the secondary task. It is hypothesized that the

boredom experienced by the subjects tended to increase drowsiness. Subjects thus

experienced a range of alertness that was greater than under the other conditions. In other

words, subjects may have gone from alert to very drowsy within this condition. Therefore,

the observed data were spread out, allowing the predicted data to track (fit the data) with

higher relative success.

Validation of Algorithms Containing A/O Task Performance Measures

The detection algorithms which contained A/O task measures that were examined are

shown in Table 17. The average R value for drowsiness detection, using data other than that

which was used for the development of the algorithms, decreased significantly. This is likely

a result of using only four subjects in the development of the prediction algorithms (based on

A/O task performance data). The use of four subjects in the development stage may limit the

predictive capabilities of the algorithms.

Another factor that may have contributed to the reduction of drowsiness prediction R

values with new data involved an unrepresentatively small amount of drowsiness observed

during the portions of runs in the new data in which the NO task was being performed. It

was observed that the “awake” classifications were the great majority of the data. Since there

was a relatively small domain of drowsiness (mostly “awake” and few “questionable” or

“drowsy” observations) an unrepresentatively low R value may have occurred.

Unfortunately, with the data that were collected during the validation phase, the algorithms

were not exercised to an extent that would result in R values similar to the original R values.

In other words, the new data were more tightly grouped.



Classification matrices were constructed using observed algorithm output and observed

definitional measures of drowsiness for the new A/O task algorithms. The APAR results can

be seen in Table 18. The classification matrices resulted in surprisingly high correct

classification rates (APARs) given the relatively low R values of the prediction algorithms

based on A/O task measures. The good results of the classification matrices suggest that an

unrepresentative sample of drowsiness data was largely the cause for deflated R values

instead of a limited predictive capability of the algorithms.

It was found that the average drowsiness-detection rate was greater for algorithms applied

to new A/O data when cruise control was engaged as compared with new A/O data when cruise

control was not engaged. One explanation for this finding is that drivers/subjects did not have

to monitor their speed when cruise control was engaged. Therefore more resources could be

allocated to the driving task and the A/O task. Since this may have been the case, alert drivers

who were frequently monitoring the speed of the vehicle would have glanced at the speedometer

often. With the greater amount of time available for subjects to glance at the speedometer the

greater was the chance for the driving task and A/O task to degrade. In other words, when

cruise control was engaged, the degradation in driving performance may have been purely due

to the inattention or drowsiness of the driver.

Overview

With regard to the predictability of the definitional measures of drowsiness using the

new data set, results demonstrate that MASTER and PERCLOS are the most predictable,

followed by EYEMEAS, NEWDEF, and AVEOBS. This order of predictability is the same

as with the original data except that AVEOBS and NEWDEF are reversed. However, a

reason for this reversal may be that different drowsiness raters were used in the validation

experiment. (AVEOBS is the average subjective rating of three raters).

The findings of this study are very encouraging, and the detection models look quite

promising. It was estimated before the validation process that an average R value would be
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reduced by approximately 0.05 when the detection algorithms’were applied to the new data.

Fortunately, the average R value loss was only 0.0069 across the validated algorithms.

We conclude on the basis of the validation procedures carried out that the detection

algorithms based on steering and accelerometer measures, as well as on steering,

accelerometer, and lane measures are quite robust and should be used in a future on-the-road

study. Even though the algorithms were developed with a certain amount of “noise”, such as

interacting with instrument panel controls while driving, they do an excellent job of

drowsiness prediction when applied to new data.
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Chapter Six: Additional Analyses of the Algorithm Validation Data --

Simulator Study of the Effects of Cruise Control, Secondary Task, and

Velocity-Related Measures on Driver Drowsiness and Drowsiness Detection

{This chapter represents an extended summary of work reported in the Sixth

Semiannual Research Report, data October 15, 1994 and referred to as Kirn,

Wreggit, and Wierwille,  1994)



INTRODUCTION

The validation experiment described in Chapter Five (Wreggit, Kim, and Wierwille,

1994) addresses the accuracy of previously developed drowsy-driver detection algorithms

when applied to new driver-subjects. However, the validation experiment was a

multipurpose experiment, designed not only for validation of algorithms, but also for the

examination of several additional research issues. The present chapter describes these

additional issues, the corresponding analyses that were performed, and the corresponding

results that were obtained. It should be noted here that the data collected for use in the

previously discussed algorithm-validation study (Chapter Five) are the same data used in this

present study.

During the algorithm development portion of the research project (Chapter Four;

Wreggit, Kim, and Wierwille, 1993),  it was observed that drivers tended to vary their speed

when they became drowsy. Velocity-related measures had not been gathered during that

phase of the project, and therefore, such measures could not be included in the main

algorithm development portion of the research. The question that arose, then, was whether or

not velocity-related measures could contribute significantly to the accuracy of drowsy-driver

detection algorithms. To answer the question, velocity-related measures were implemented

in the validation experiment.

Three velocity-related measures were obtained during the validation phase, including:

forward velocity standard deviation (FVELSD), forward acceleration standard deviation

(FACCSD), and accelerator position standard deviation (PEDDEV). New algorithms were

developed in this supplemental study using the validation experiment data in two ways:

without velocity-related measures and with velocity-related measures. Thus, a direct

comparison could be made that would allow assessment of any gains in accuracy obtainable

using velocity-related measures.

Another question that remained regarding the A/O task was whether or not the task

had an alerting effect on the driver. If so, the task would serve the dual purposes of a
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drowsiness detection aid and an alertness aid. Originally, the purpose of the A/O task was to

provide an independent assessment of the level of drowsiness by having the driver respond to

a task of low cognitive content. However, further investigation was carried out to determine

if the A/O task does alert drowsy drivers.

.

Finally, the design of the validation experiment included segments in which cruise

control was engaged. In this condition, the driver did not have to control speed, just as in an

actual vehicle with cruise control engaged. Since each driver experienced both cruise control

and non-cruise control conditions, direct comparisons of alertness could be made. Thus, the

question of whether or not cruise control usage contributed to level of drowsiness could be

answered.

In summary, there were three main questions to be answered by the additional

analyses performed on the data from the validation experiment:

1. Do forward-velocity measures covary with level of drowsiness, and do they

improve drowsiness-detection algorithm accuracy? If so, by how much do they

improve accuracy?

2. Does the A/O task, which can be used as a drowsiness detection discriminator,

have an alerting effect on the driver? and.

3. Does the use of cruise control increase the level of drowsiness in sleep-deprived

drivers?
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METHOD

Subjects were the same as those described in Chapter Five (Wreggit, Kim, and

Wierwille, 1994)

Apparatus.

The apparatus employed was the same as described in Chapter Five (Wreggit, Kim,

and Wierwille, 1994)

ental Design

The additional analyses of the data collected during the algorithm validation phase

employed a 2 X 2 X 6 complete factorial within-subject design. The first two factors and

levels were as follows:

1. Speed control

a. Speed controlled by driver

b. Cruise control engaged; Speed automatically set at 60 m.p.h.

2. Subsidiary Task

a. No subsidiary task

b. Auditory subsidiary task requiring response

The third factor that was considered was time interval which had six levels. The

experimental session was divided into four sections of 36 minutes each. Within each

section, six six-minute averages of the various dependent measures were calculated to

examine the effect of time on driving performance. In each section the subject underwent

one of the four possible conditions:

1. No Cruise Control, No Secondary Task

2. No Cruise Control, Secondary Task

3. Cruise Control Engaged, No Secondary Task

4. Cruise Control Engaged, Secondary Task
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Presentation order of the conditions for each subject was determined by selecting one

line from three different 4 X 4 Latin squares. Four of the male subjects completed one Latin

square, the other four males completed the second, and the four female subjects completed

the third.

Several categories of measures were gathered for analysis in this experiment. The

collected measures are described in the algorithm development portion (Chapter Four;

Wreggit, Kirn, and Wierwille, 1993) of this paper and are the same those employed in the

algorithm-validation study. The development and validation studies, however, did not

employ velocity-related measures though these measures were collected during the

algorithm-validation phase. The collected velocity-related measures are described below.

l FVELSD: The standard deviation of the forward velocity of the vehicle.

l FACCSD: The standard deviation of the forward acceleration of the vehicle

l PEDDEV: The standard deviation of the position of the accelerator pedal relative to the

released position.

Procedure

Subject procedure. All driver-subjects underwent the same pre-driving procedures as

the driver-subjects in the algorithm development phase and stayed at the Vehicle Analysis

and Simulation Laboratory for approximately the same amount of time.

Experimental task. All subjects drove the simulated automobile as if it were an actual

car. The driver-subjects were instructed to drive within the right lane at all times during the

run. All subjects performed the same secondary (A/O) task that was employed during the

algorithm development phase. In addition, a cruise control condition was incorporated into

the driving task. When the cruise control was engaged the simulated automobile maintained

60 miles per hour. When the cruise control was not engaged the subject was asked to

maintain approximately 60 miles per hour. Subjects drove for a total of 156 minutes.
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As previously mentioned, the experimental task conditions changed every 36 minutes

(after the first condition). Depending on the condition presented, the subject was asked either

to:

1. Respond to the secondary task while monitoring and maintaining a speed of

60 m.p.h.

2. Respond to the secondary task while cruise control was engaged.

3. Simply monitor and maintain 60 m.p.h.

4. Simply stay in the right lane while cruise control was engaged.

Data Analysis Overview

The pre-analysis data reduction procedures were the same as those described in

Chapter Five (see Figure 16).

After data reduction, several different analyses were run to answer the various

research questions of the study. Unequal n’s analyses were used to determine the relationship

between speed variability and drowsiness. Each analysis involved a three part procedure.

Each data point (six minute average) for each subject was classified as awake (A),

questionable (Q), or drowsy (D) for each of the five drowsiness measures. This was

accomplished using the same threshold criteria set by Wreggit, Kim, and Wierwille (1993).

Once the drowsiness measures had been classified, it was possible to classify the

corresponding data point for each velocity-related measure. Thus within each drowsiness

measure, there were three groups (A, Q. and D) of unequal number that could be compared in

terms of variation of velocity-related measures. The tests that were used to make these

comparisons were one-way parametric ANOVAs and one-way Kruskal-Wallis nonparametric

ANOVAs.  The nonparametric tests were used when the assumptions for the parametric tests

were not met (usually lack of homogeneity of variance).

Next, Pearson product-moment correlation coefficients (r) were calculated to

determine whether or not velocity-related measures were reliable indicators of drowsiness.

First the non-cruise data were divided into task, no task, and all non-cruise data. Pearson r
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values were then found between the variation of each velocity-related measure and the

magnitude of each drowsiness measure for the three different groups. The r values were then

compared and tested for significance between groups.

Thirdly, 2 X 2 X 6 analyses of variance were conducted to examine the effects and

interactions of cruise control, secondary task, and time interval on drowsiness and lane

keeping. To examine these effects on drowsiness, the five definitional measures AVEOBS,

EYEMEAS, NEWDEF, PERCLOS, and, MASTER were used as dependent measures.

Similarly, to examine the effects of cruise and A/O task on lane keeping, the previously

described lane related measures LANDEV, LNMNSQ, LANEX, and LNERRSQ were used

as dependent measures.

The final set of analyses was used to examine whether or not velocity-related

measures would improve drowsiness detection algorithms. Two cases of multiple regression

analyses were used for this purpose. In case 1, multiple regression was used to develop

algorithms without the inclusion of velocity-related measures. In case 2, velocity-related

measures were included with the other measures to develop detection algorithms. Multiple

correlation coefficients and apparent accuracy rates of the different cases were compared for

each velocity measure and each drowsiness measure.
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RESULTS

, alyses

Both parametric and Kruskal-Wallis nonparametric ANOVAs were run. Before

conducting either test, the data for the groups “Awake”, “Questionable”, and “Drowsy” were

examined for normality and homogeneity of variance using both Levene’s test and the

Hartley F-Max test. If results from either of these tests exhibited heterogeneity of variance, a

plot of means and standard deviations was examined for high correlation. Based on the

findings of these analyses, a parametric test, nonparametric test, or both (if the tests of

assumptions were inconclusive) were run to differentiate between the groups. The

summarized results can be seen in Kim, Wreggit, and Wierwille (1994).

Regardless of the type of test used (parametric or nonparametric), the results followed

a distinct pattern. For the data set in which subjects completed the secondary A/O task, there

were only two significant differences (a = 0.05) between groups out of a possible 15 (five

drowsiness measures across the three velocity-related measures). More specifically, there

were two times that forward acceleration (FACCSD) differed between the “Awake”,

“Questionable”, and “Drowsy” groups. No significant differences between the groups were

found in either forward velocity (FVELSD) or pedal deviations (PEDDEV) under the task

condition.

In contrast, under the no task condition (which refers to the absence of the A/O task),

significance (a = 0.05) between groups was seen in 14 out of the 15 possible cases. For

PEDDEV and FVELSD, there was a significant difference between at least two groups in all

cases. As for FACCSD, there was a significant difference in forward acceleration between at

least two groups for four out of five cases.

When all non-cruise data were examined as a whole data set, there was also a large

domain of significance found between groups. Once again, at least two groups differed

significantly in every case with regard to FVELSD and PEDDEV. With FACCSD,

parametric and nonparametric tests tended to give different results. Nonparametric tests
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exhibited significance in four cases. However, parametric tests failed to show significance

between any groups at a = 0.05.

Correlation Analyses

Pearson product-moment correlation (r) values were found between each velocity-

related measure and each drowsiness measure. Similar to the previous analyses, these

correlations were computed for task condition data, no task condition data, and combined

data separately and compared. Table 19 is a summary of the results.

Using Fisher’s Z transformations, it was possible to test for significant differences

between the groups. As one can also see from Table 19, the correlations in the no-task

condition were significantly higher than the task grouping, combined grouping, or both in 13

out of 15 cases. In all cases within the no task group, correlations between drowsiness

measure and velocity-related measure were moderately high, whereas in the task group

correlations between drowsiness measure and velocity-related measure were weak in all cases

but one. The correlations found with the combined data were mostly weak.

To further compare the groups, regression lines plotted for each group’s d&a can be

seen in Figure 27. The figure shows results obtained for PERCLOS versus FVELSD and is

typical of the other plots.

Analyses of Variance

Table 20 contains a summary of the results of the 2 X 2 X 6 ANOVAs that were run

to test the main effects and interactions of cruise control, secondary task, and time interval on

drowsiness and lane keeping. As mentioned previously, there were two levels of cruise

control (engaged and disengaged), there were two levels of secondary task (present and

absent) and there were six levels of time interval (six six-minute intervals within each

condition).

Five separate dependent measures were used as measures of drowsiness: AVEOBS,

EYEMEAS, NEWDEF, PERCLOS, and MASTER. There were no main effects for either

cruise or task for any drowsiness measure. In addition, no two- or three-way interactions
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Table 19: Summary Table of Correlation Analyses

Pearson product-moment correlation coefficients  (r) for drowsiness measure and longitudinal
speed variation (FVELSD) with associated test of significance as a function of A/O task, no
task, or combined data conditions.

Drowsiness Measure A/O Task
AVEOBS 0.345§
EYEMEAS 0.198§
NEWDEF 0.129§
PERCLOS 0.147§
MASTER 0.223 §

No Task
0.6174
0.606”
0.617*
0.638*
0.666*

Combined Data
0.441
0.347§
0.310§
0.327§
0.387§

Pearson product-moment correlation coefficients (r) for drowsiness measure and longitudinal
acceleration standard deviation (FACCSD) with associated test of significance as a function
of A/O task, no task, or combined data conditions.

Drowsiness Measure
AVEOBS
EYEMEAS
NEWDEF
PERCLOS
MASTER

A/O Task
0.145
0.040§
0.053§
0.086§
0.088§

No Task
0.445
0.485*
0.529*
0.506*
0.527*

Combined Data
0.203 .
0.142§
0.161§
0.177§
0.185§

Pearson product-moment correlation coefficients (r) for drowsiness measure and accelerator
pedal deviation (PEDDEV) with associated test of significance as a function of A/O task, no
task, or combined data conditions.

Drowsiness Measure
AVEOBS
EYEMEAS
NEWDEF
PERCLOS
MASTER

A/O Task No Task Combined Data
0.406 0.513 0.443
0.218§ 0.578\/ 0.380
0.131§ 0.562\/ 0.331
0.143§ 0.589\/ 0.356
0.241§ 0.601\/ 0.410

* r value differs significantly from all other r values for a given drowsiness measure (row)

§ r value differs significantly from r value under “No Task” condition for a given drowsiness measure (row)

\/ r value differs significantly from r value under “A/O Task” condition for a given drowsiness measure (row)

149





Table 20: Summary Table of ANOVA Results

summary table of p-values of main effects for
2  (A/O Task) x 2 (Cruise Control) x 6 (Interval) ANOVAs

Drowsiness Measure A/O Task
AVEOBS 0.693
EYEMEAS 0.847
NEWDEF 0.874
P E R C L O S 0.182
MASTER 0.325

Performance Measure
LANDEV
LANEX
LNERRSQ
LNMNSQ

A/O Task
0.270
0.507
0.192
0.197

Note: No interaction was significant (a = 0.05)

* significant (a = 0.05)

Cruise Control Interval
0.520 1.14 E-13*
0.098 6.99 E-7*
0.114 4.79 E-6*
0.084 0.049*
0.103 0.026*

Cruise Control
0.327
0.220
0.376
0.385

Interval
0.005*
3.82 E-5*
0.204
0.310
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were found to be significant. However, a significant main effect (a = 0.05) of time interval

was found in every case. A significant increase in drowsiness-measure values between levels

of time interval was seen.

Dependent measures for lane keeping included LANDEV, LNMNSQ, LANEX, and

LNERRSQ. Results were similar to measures of drowsiness in that there were no main

effects found for either cruise control or secondary task conditions. Likewise, no significant

two- or three-way interactions were found. However, there was a significant main effect

increase (a = 0.05) of both LANDEV and LANEX lateral performance measures over time

interval.

Multiple Regression

Multiple regression analyses were run to examine whether or not velocity-related

measures could contribute to drowsiness detection algorithms. Tables 2 1, 22, and 23 are

summaries of the results for the individual velocity-related measures (FVELSD, FACCSD,

and PEDDEV). Table 24 is a summary of the results when all velocity-related measures

were included together in the algorithm development. As mentioned previously, algorithms

were developed in two different cases in order to evaluate the predictive strength of the

velocity-related measures. The following is a brief description of the procedures that were

used for generating the results found in Tables 21, 22, 23,  and 24.

On the left half of each table, algorithms for both Case 1 and Case 2 were developed

using the accelerometer and steering measures that were defined previously. In Case 1, these

measures alone were used for algorithm development. Using each drowsiness measure as a

separate dependent variable, backwards stepwise  regression and a re-substitution process

were conducted. The algorithm was developed when all remaining independent measures

were significant.

In Case 2, velocity-related measures were added to the accelerometer and steering

measures for algorithm development. Once again backwards stepwise  regression and re-
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Table 21: Summary Table of Multiple Regression Analyses Results Showing R Values for

Forward Velocity Standard Deviation (FVELSD)

Steering and Accel.
Measures

Case 1 Case 2

Steering, Accel., and Lane
Measures

Case 1 Case 2

AVEOBS               0.799 I 0.799* I 0.845 I 0.845*

EYEMEAS 0.862 0.862* 0.892 0.892*

NEWDEF 0.834 0.834* 0.85 1 0.866.
FVELSD

.PERCLOS 0.871 0.876 0.911 0.923
FVELSD FVELSD

MASTER 0.897 0.897* 0.93 1 0.931*

* Algorithm same as Case 1 (FVELSD provided no improvement and was deleted)

FVELSD -- boldface indicates that FVELSD contributed to significant increase in
algorithm R value
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Table 22: Summary Table of Multiple Regression Analyses Results Showing R Values for

Forward Acceleration Standard Deviation (FACCSD)

Steering and Accel. Steering, Accel., and Lane
Measures Measures

Case 1              Case 2              Case 1              Case 2
I

AVEOBS 0.799 0.799* 0.845 0.845*

I EYEMEAS 0.862 0.862* 0.892 0.892*

NEWDEF 0.834 0.834* 0.851 0.868
FACCSD

PERCLOS 0.871 0.871* 0.911 0.927
FACCSD

MASTER 0.897 0.897* 0.93 1 0.933
FACCSD

* Algorithm same as Case 1 (FACCSD provided no improvement and was deleted)

FACCSD -- boldface indicates that FACCSD contributed to significant increase in algorithm
R value
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Table 23: Summary Table of Multiple Regression Analyses Results Showing R Values for

Accelerator Pedal Movement Standard Deviation (PEDDEV)

AVEOBS

EYEMEAS

Steering and Accel. Steering, Accel., and Lane
Measures Measures

Case 1 Case 2 Case 1 Case 2

0.799 0.799’ 0.845 0.844*

0.862 0.862* 0.892 0.892*

 

NEWDEF

PERCLOS

MASTER

0.834

0.871

0.897

0.840
PEDDEV

0.880
PEDDEV

0.897*

0.851

0.911

0.931

0.859
PEDDEV

0.915
PEDDEV

0.931*

* Algorithm same as Case 1 (PEDDEV provided no improvement and was deleted)

PEDDEV -- boldface indicates that PEDDEV contributed to significant increase in
algorithm R value
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Table 24: Summary Table of Multiple Regression Analyses Results Showing R Values for

All Velocity-Related Measures (FVELSD, FACCSD, and PEDDEV)

MASTER 0.897 0.897* 0.93 1 0.933
FACCSD,

* Algorithm same as Case 1 (None of the longitudinal measures improved a  orithm
accuracy- All were deleted)

FVELSD -- boldface indicates that FVELSD contributed to significant increase in
algorithm R value

FACCSD -- boldface indicates that FACCSD contributed to significant increase in
algorithm R value

PEDDEV -- boldface indicates that PEDDEV contributed to significant increase in
algorithm R value

Multiple longitudinal measures listed in the table indicate that the combination of measures
contributed significantly to algorithm R value
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substitution were used. Those cases in which the velocity-related measures remained

significant and contributed to the algorithm are listed in bold print in the tables.

For the right half of each table, lane-related measures were added to the independent

measures for both cases, The definitions for these measures can also be found in the

Experimental Design section. The procedures for developing the algorithms for Case 1 and

Case 2 are identical to those used for the left half of the chart (velocity-related measures

added in Case 2 only).

Velocity-related measures, added individually, contributed to 10 out of 30 drowsiness

detection algorithms. The amounts contributed ranged from 0.002 to 0.017. When all three

velocity-related measures were used in the regression, one out of ten algorithms was

improved by 0.02 1.

To better understand the additional predictive strength of the velocity-related

measures, classification matrices of the Case 1 and Case 2 algorithms were constructed.

These can be seen with the associated algorithms for PERCLOS in Figures 28, 29, and 30.

See Kirn, Wreggit, and Wierwille for a complete set of APARs and algorithm results. These

matrices represent data that have been classified as “Awake, “Questionable”, or “Drowsy” as

was done previously for the unequal n’s analyses. The bolded numbers in the classification

matrices have been classified correctly. The cells with bolded borders contain the number of

large misclassifications.
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Steering, Accelerometer, and Selected Lane Measures - Case 1 (Algorithm developed without FVELSD)
Regression Summary foi Dependent Variable: PERCLOS
R = 0.91122539 R2 = 0.83033171 Adjusted R2 = 0.82418431 F(5. 138) = 135.07 p < 0.0000 Std. error of estimate: 0.02996

Predicted

Observed

PERCLOS (R Value = 0.911)
Apparent Accuracy Rate (large misclassifications): 0.986
Apparent Accuracy Rate (all misclassifications): 0.910

Steering, Accelerometer, and Selected Lane Measures - Case 2 (Algorithm developed with FVELSD)
Regression Summary for Dependent Variable: PERCLOS
R = 0.92265664 R2 = 0.85129528 Adjusted R2 = 0.84364136 F(7.136) = 111.22 p < 0.0000 Std. error of estimate: 0.02826

STEXED  -0.1961 0.0911  -17.92416 8.33013 -2.152 0.0332

Predicted

Observed

PERCLOS (R Value = 0.923)
Apparent Accuracy Rate (large misclassifications): 0.993
Apparent Accuracy Rate (all misclassifications): 0.910 .

Figure 28: Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results
(Independent Variables Included Steering, Accelerometer, and Lane Measures.
FVELSD Included in Case 2 Only.)
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Steering, Accelerometer, and Selected Lane Measures - Case 1 (Algorithm developed without FACCSD)
Regression Summary for Dependent Variable: PERCLOS

Predicted

Observed

PERCLOS (R Value = 0.911)
Apparent Accuracy Rate (large misclassifications): 0.986
Apparent Accuracy Rate (all misclassifications): 0.910

Steering, Accelerometer, and Selected Lane Measures - Case 2 (Algorithm developed with FACCSD)
Regression Summary for Dependent Variable: PERCLOS

estimate: 0.02741

Predicted

Observed

PERCLOS (R Value = 0.927)
Apparent Accuracy Rate (large misclassifications): 0.993
Apparent Accuracy Rate (all misclassifications): 0.917

Figure 29: Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results
(Independent Variables Included Steering, Accelerometer, and Lane Measures.
FACCSD Included in Case 2 Only.)
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Steering, Accelerometer, and Selected Lane Measures - Case 1 (Algorithm developed without PEDDEV)
Regression Summary for Dependent Variable: PERCLOS
R= 0.91122539 R2 = 0.83033171 Adjusted R2 = 0.82418431 F(5. 138) = 135.07 p < 0.0000 Std. error ofestimate: 0.02996

Predicted

Observed

PERCLOS (R Value = 0.911)
Apparent Accuracy Rate (large misclassifications): 0.986
Apparent Accuracy Rate (all misclassifications): 0.910

Steering, Accelerometer, and Selected Lane Measures - Case 2 (Algorithm developed with PEDDEV)
Regression Summary for Dependent Variable: PERCLOS
R = 0.92738791 R2 = 0.86004834 Adjusted R2 = 0.85284495 F(7. 136) = 119.39 p < 0.0000 Std. error of estimate: 0.02741

 lnterceot
Beta

St. Err. of
Beta

St. Err
B of B t(138) p-level

0.00309 0.00442 0.699 0.4854
INTACDEV   -0.2195  0.0366  -0.09742  0.01625  -5.994  0.0000
LANDEV 0.5296 0.0818 0.03379 0.00522 6.477 0.0000
LANEX 0.2331  0.0892 0.15151 0.05798 2.613 0.0100
PEDDEV -0.1215 0.0478 .-0.00527 0.00207 -2.542 0.0121
LGREV 0.4474 0.0950 0.01765 0.00375 4.711 0.0000
STEXED  -0.2744  0.0638  -25.08181  5.83238  -4.300  0.0000

Predicted

Observed

PERCLOS (R Value = 0.915)
Apparent Accuracy Rate (large misclassifications): 0.986
Apparent Accuracy Rate (all misclassifications): 0.910

Figure 30: Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results
(Independent Variables Included Steering, Accelerometer, and Lane Measures.
PEDDEV Included in Case 2 Only.)

160



DISCUSSION

In general, velocity-related measures were found to be moderately good indicators

and predictors of drowsiness under certain conditions. Under the “no task” condition,

unequal n’s analyses and correlation analyses showed promising results. In addition, all three

velocity-related measures contributed slightly to the predictive power of multiple regression

algorithms. Analysis of variance results showed no main effect for either cruise control or

secondary task on drowsiness or lane-keeping. However, the ANOVAs did show a main

. effect for time interval.

Speed Variability vs. Drowsiness

Unequal n’s analyses suggested that speed variability increased with drowsiness when

no secondary task was present. In every case, speed variability was greater among data

classified as “drowsy” than data classified as “awake” for the no task condition. The results

of further analyses showed that the same holds true for forward acceleration variability and

accelerator pedal movement variability.

Similarly, when the task condition and the no task condition are combined to form

all non-cruise data, speed variability, forward acceleration, and accelerator pedal

movement are significantly different between the “Drowsy” and “Awake” data sets in most

cases. However, when only the task condition data is examined, there are no significant

differences between “Drowsy” and “Awake” data for either speed variability or pedal

movement.

In summary, when driver-subjects are not given a secondary task, the variability for

all velocity-related measures increase with drowsiness. When subjects are given a task, very

little variability is seen in speed, acceleration, or pedal movement. The results suggest that

the secondary task may have kept subjects more stimulated and thus helped them monitor

and control their speed. In the conditions in which the secondary task is absent, it was

possible that subjects become under loaded and lost their ability to concentrate on speed

maintenance.
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.Velocity-Related Measures as Indicators of Drowsiness

A strong positive correlation between drowsiness and velocity-related measures was

not established for the entire sample. However, the data from the no-task condition showed

moderately high positive correlations with means of 0.629 for speed variation, 0.498 for

acceleration, and 0.569 for pedal movement, Correlations for the task condition were weak.

As with the previous analyses, velocity-related measures proved to be more promising

in the no-task condition. An increase in drowsiness was moderately associated with an

increase in speed variation only when a secondary task was not presented.

From these data one can conclude that, in general, velocity-related measures are fairly

weak indicators of drowsiness. However, when subjects are not responding to a task,

velocity-related measures are moderately strong indicators of drowsiness,

Cruise Control, Secondary Task, and Time Interval vs. Drowsiness and Lane-Keeping

Five 2 X 2 X 6 ANOVAs were run to examine the effects and interactions of cruise

control, secondary A/O task, and time interval on drowsiness. One ANOVA was run for

each drowsiness measure. Time interval was found to have the only significant main effect

on drowsiness. No two- or three-way interactions were found to be significant.

These findings were somewhat surprising since the secondary A/O task seemed to

have a large effect on speed maintenance ability. However, the previous analyses utilized

only half of the gathered data (non-cruise control). Analysis of all the data showed that for

most subjects, drowsiness level varied greatly. Although the mean drowsiness level was

higher in the no-task condition than in the task condition, there was a great deal of variance.

Therefore, drowsiness level in the no-task condition was not significantly higher than the

drowsiness level in the task condition. This same trend occurred with the cruise control

factor. Although the mean value for most drowsiness measures was higher in the cruise

control conditions, no significant effect (a = 0.05) was found due to large variance of

drowsiness in the cruise control condition.
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In terms of lane-keeping, the results offer similar suggestions. From the ANOVAs,  it

appears that time interval was the only factor significantly affecting drivers’ drowsiness.

Drivers’ abilities to stay within lane boundaries did not seem to be significantly affected by

the presence or absence of secondary task or cruise control.

Detection Models Including Velocity-Related Measures vs. Detection Models Not Including

Velocity-Related Measures

The potential gains from velocity-related measures are quite modest. For the

algorithms that were improved by one or more velocity measures, the average gain in

correlation was only 0.010. Examination of classification matrices revealed very small

improvement in accuracy for the algorithms to which they contributed.

In most cases, velocity-related measures did not contribute to detection accuracy.

However, the installation of these measures is both unobtrusive and not overly complex.

Ultimately, it is a tradeoff of costs and benefits as to whether very small improvements in

detection accuracy justify the added cost.
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CONCLUSIONS

This experiment helped to shed light upon questions related to velocity-related

performance measures, cruise control, and auditory secondary tasks as they apply to

drowsiness and driving. With regard to velocity-related measures, drivers seemed to vary

their speed when they became quite drowsy. This can be seen best when drivers are not

performing a secondary task and are possibly under loaded. However, velocity-related

measures were not found to be good indicators of drowsiness. It is likely that speed variance

while drivers are alert was too similar to variance of speed while drivers were drowsy to be a

reliable indicator of drowsiness. However, velocity-related measures became much better

indicators when drivers were exposed to the no-task condition in comparison to task

conditions.

This research suggests that improvements in detection algorithms from the addition of

velocity-related measures will be modest at best . This is not to say that velocity-related

measures cannot be very strong predictors at times, but overall these performance measures

add only small amounts of predictive information.

With regard to the secondary task. the findings from this study suggest that future

research is required. Although driver drowsiness does not appear to be affected by the

presence of a secondary task, drivers’ ability to maintain speed is improved by the presence of

a secondary task. The lack of a secondary task or other stimulation does not induce

drowsiness, but it may help induce inattention. Perhaps the presence of a nonstressful

secondary task would help keep driver attention from waning.
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Chapter Seven

Part One: Further Algorithm Refinement and Investigation - Effects of Using Higher

Order Algorithms on Drowsy Driver Detection Accuracy

(Work reported in this part of Chapter Seven has not appeared in previous

semiannual research reports. This work was carried out by Rollin  J. Fairbanks

and Walter W. Wierwille. It is referred to as Fairbanks and Wierwille, 1994)
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INTRODUCTION

This study focused on the effects of using higher-order (non-linear) algorithms on

drowsy-driver detection accuracy. Measures from the development phase (Wreggit, Kirn,

and Wierwille, 1993) and validation phase (Wreggit, Kirn, and Wierwille, 1994) were

squared or multiplied with each other to obtain cross products. The second order terms,

combined with first order terms, were used to calculate predictive algorithms using data from

the development phase. The developed algorithms were then applied to the validation data.

The main purpose of this follow-up study was to examine the potential for

improvement in algorithm accuracy with the addition of second order terms to the

drowsiness-detection algorithms. Three groups of independent measures were selected from

the development phase (Chapter 4) data and used to estimate the dependent measure

“PERCLOS.” Multiple regression analyses were performed using linear (first order) terms

only, linear and cross product (first order and partial second order) terms, and all first and

second order (full second order) terms from each of the three groups of independent

measures. The nine algorithms developed from this process were applied to the data

collected during validation phase (Chapter 5) of the main study. The accuracy of each type

of algorithm (linear, cross product, or full second order) was determined by examining

multiple regression Pearson-product-moment correlation (R) values as well as by

classification matrices.

Although not conclusively proven by the present study, the results do support the

hypothesis that higher-order algorithms produce more and larger outliers when applied to

new data than do linear algorithms. The experimenters involved with this study were

interested in quantifying the effects of the prediction outliers on classification accuracy,

therefore prediction outliers were limited to the maximum and minimum scores of the

observed data. Subsequently, a comparison of classification accuracy was conducted

between data with outliers present and data with no outliers.
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METHOD

Data collected during the main study were selected to be re-analyzed. The selected

data included independent and dependent measures from all subjects in both phases of the

main study.

Three groups of independent measures were selected from those used in phase II of

the driver drowsiness main study. There were several categories of measures used in phase II

which included seat movement, steering, accelerometer, lane, heading, and subsidiary (A/O)

task-related measures, as well as brain wave activity and heart rate measures. These

measures are described in detail in the algorithm development report (Wreggit, Kirn, and

Wierwille, 1993). Three groups of independent measures employed in this study included

variables most often appearing in the previously developed algorithms. The names of the

selected variables used for the present study and their descriptions are as follow (Wreggit,

Kim, and Wierwille, 1993):

Steering-related measures:

. NMRHOLD:

. THRSHLD:

. STVELV:

. LGREV:

.  MDREV:

.  SMREV:

The number of times the hold circuit output on the steering wheel

exceeded a threshold value (corresponding to holding the steering

wheel still for 0.4 second or longer).

The proportion of total time that the hold circuit on the steering wheel

exceeded a threshold value.

The variance of steering velocity.

The number of times that steering excursions exceeded 15 degrees

after steering velocity passed through zero.

The number of times that steering excursions exceeded 5 degrees (but

less than 15 degrees) after steering velocity passed through zero.

The number of times that steering excursions exceeded 1 degree (but

less than 5 degrees) after steering velocity passed through zero.
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l STEXED: . The proportion of time that steering velocity exceeded 150 degrees per

second.

Accelerometer-related measure:

l INTACDEV: The standard deviation of the lateral velocity of the vehicle. (This

signal was obtained by passing the smoothed accelerometer signal

through an additional low pass filter (leaking integrator) with a comer

frequency of 0.004 Hz.)

Lane-related measures: ,

. LANDEV: The standard deviation of lateral position relative to the lane.

. LNRTDEV: The standard deviation of the time derivative of lane position.

. LANEX: The proportion of time that any part of the vehicle exceeded a lane

boundary.

. LNERRSQ: The mean square of the difference between the outside edge of the

vehicle and the lane edge when the vehicle exceeded the lane. When

the vehicle did not exceed the lane, the contribution to the measure

was zero.

The definitional measure of drowsiness, PERCLOS, was selected to be used as the

dependent measure. PERCLOS is defined as the proportion of time that the eyes of a

driver/subject are closed 80% or more. This measure was collected during both phases of the

main study. Although five definitional measures were used as dependent measures in

algorithm development and validation phases, PERCLOS was chosen as the dependent.

measure for this study for the following reasons:

l It is desirable to use only one definitional measure to ensure control across conditions,

thus allowing reliable comparisons between the various non linear and linear algorithms.
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l PERCLOS is typical of the definitional measures and is one of the most likely to be used

in implementation.

l It was found in phase III of the main study that PERCLOS was one of the most reliable

definitional measures between subjects (Wreggit, Kim, and Wierwille, 1993).

The data representing these independent variables from the twelve subjects of phase II

of the main study were divided into three variable groups as illustrated in Table 25. The data

from each group were then used to develop predictive algorithms using PERCLOS as the

dependent variable.

Each group of variables was expanded to include linear terms (X, Y, Z, etc.), cross

product terms (XY, XZ, YZ, etc.), and squared terms (X2, Y2, Z2, etc.). These variables were

divided into three subgroups with designations LIN, LINCROSS, and FULL, described as

follow: ,

1. Subgroup LIN includes linear terms only,

2. Subgroup LINCROSS includes linear terms and cross product terms, and

3. Subgroup FULL includes linear terms, cross product terms, and squared terms.

Dataa Analysis

Backwards stepwise  multiple regression and re-substitution were performed on each

of the nine subgroups of collected data to find optimized combinations of variables that

would best predict the values of PERCLOS. Pearson-product-moment correlation (R)

analysis and classification matrices were used to analyze the results of these algorithms.

Although the use of discriminant analysis was considered, it had been shown that this

technique results in negligible gain over the results of multiple regression (Wreggit, Kim and

Wierwille, 1993). Therefore, discriminant analysis was not used.

Multiple regression. In each multiple regression analysis the B weights of the various

measures were first examined. Pairs of measures that were linearly related would exhibit

large offsetting B coefficients. One member of the pair was then removed. Thereafter, the
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Table 25: Summary of Variable Groups Used in Algorithm Development.

VARIABLE GROUP 1
(Used for regressions to develop algorithms: 1-LIN, 1-LINCROSS, and 1 -FULL)

Dependent Variable: PERCLOS

Independent Variables: A- STVELV (steering-related measure)
B- LGREV (steering-related measure)
C -  MDREV (steering-related measure)
D- SMREV (steering-related measure)
E- STEXED (steering-related measure)
F- NMRHOLD (steering-related measure)
G- THRSHLD (steering-related measure)

VARIABLE GROUP 2
(Used for regressions to develop algorithms: 2-LIN, 2-LINCROSS, and 2-FULL)

Dependent Variable:. PERCLOS

Independent Variables: A- LGREV (steering-related measure)
B- STEXED (steering-related measure)
C- NMRHOLD (steering-related measure)
D- THRSHLD (steering-related measure)
E- INTACDEV (accelerometer-related measure)
F- LANDEV (lane-related measure)
G- LINERRSQ (lane-related measure)

(Used for regressions to develop algorithms: 3-LIN, 3-LINCROSS, and 3-FULL)

Dependent Variable: PERCLOS

Independent Variables:  A- LGREV
B- STEXED
C- NMRHOLD
D- THRSHLD
E- MDREV
F- INTACDEV
.G- LANDEV
H- LINERRSQ
I- LINRTDEV
J- LANEX

(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(accelerometer-related measure)
(lane-related measure)
(lane-related measure)
(lane-related measure)
(lane-related measure)
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elimination of nonsignificant measures (p > 0.05) began, starting with the measure having the

smallest F-ratio. During each step of this process the B weights continued to be examined

and correction for linearly related measures was made. Once all remaining independent

measures were found to be significant (p < 0.05), various measures were substituted back into

the set. This backward stepwise/re-substitution approach to multiple regression produced the

final set of results for each subgroup of variables. Once these results were attained, B

weights were used as coefficients for the corresponding independent variable to form

predictive algorithms with respect to PERCLOS.

The stability of these predictive algorithms was examined using data collected during

phase III (the validation phase) of the main study. The algorithm outputs (predicted)

PERCLOS were produced and compared to the actual (observed) PERCLOS. Algorithm

accuracy was measured using multiple correlation Pearson-product-moment correlation (R)

values and classification matrices.

R values. The algorithms were re-applied to the data which were used in their

development, and the resulting predicted PERCLOS data were compared to the actual

(observed) PERCLOS data. Algorithm accuracy was measured using Pearson-product-

moment correlation (R) values and correlation matrices.

"Clipped" R values. To minimize the confounding effect of outliers within the

algorithm output data sets output values greater than 0.45 were set equal to 0.45, and those

with values less than zero (0.0) were set equal to zero (0.0). These values are based on the

maximum and minimum values of the actual (observed) PERCLOS data. As was done

previously, algorithm accuracy was measured using multiple correlation Pearson-product-

moment correlation (R) values.

Classification matrices. As indicated, algorithm accuracy was also examined using

classification matrices. The threshold levels employed were the same as those used in the

algorithm development phase of the main study (Wreggit, Kim, and Wierwille, 1993). The
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PERCLOS data were classified into three categories of drowsiness (“awake,” “questionable,”

and “drowsy”) according to the following criteria:

Classification PERCLOS Value

Awake PERCLOS < 0.075

Questionable 0.075 < PERCLOS < 0.15

Drowsy PERCLOS > 0.15

Observed (actual) PERCLOS classification data were compared with predicted (algorithm

output) data, and the results were summarized in classification matrices. Misclassifications,

or data sets in which the predicted category did not match the observed category, were

examined and further divided into “large error” misclassifications and “all error”

misclassifications. “Large error” misclassifications were defined as any misclassification in

which the predicted classifications are two categories away from the observed (actual)

classification. To summarize the results of these analyses, Apparent Accuracy Rates

(APARs) were calculated for both “large error” misclassifications and “all”

misclassifications. The APAR for large misclassifications is the proportion of predicted

PERCLOS classifications which are not large errors, and the APAR for all misclassifications

is the proportion of predicted PERCLOS classifications which are correct. Classification

matrix analysis was not conducted using “clipped” algorithm output (predicted) PERCLOS

data since there would have been no differences when compared with unclipped data.
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RESULTS

In total, nine algorithms were developed in this study. These algorithms were derived

from three separate groups of variables which were each expanded to subgroups of linear

(LIN) terms only, linear and cross product (LINCROSS) terms, and all first and second order

(FULL) terms from each of the three groups of independent measures. These algorithms

were applied to the original (development) data set and to the new (validation) data set from

the main study. The results from these data sets were analyzed using Pearson-product-

moment correlation (R) values and classification matrices as described earlier.

Multiple Regression

Table 26 contains an example of typical results obtained from multiple regression

analyses. First order terms are labeled with the appropriate variable name, while second

order terms are signified with letters which correspond to the letter designations noted in

Table 25. R values are shown at the top, B weights (non-standardized) are listed in the fourth

column and were used as coefficients for the corresponding variable for the purpose of

algorithm development. For a complete set of multiple regression tables see Appendix A in

Fairbanks and Wierwille (1994).

Pearson-Product-Moment Correlation (R) Values

Correlation (R) values resulting from analysis of the output PERCLOS data (and

“clipped” output PERCLOS data) versus actual PERCLOS values for each of the nine

algorithms are summarized in Table 27. These results are presented for both the original data

set and validation data to allow comparison. Average values for each type algorithm (linear,

linear/cross product, and full second order) are presented in the lower section of the table.
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Table 26: Multiple Regression Summary for Algorithm 1 -FULL and Dependent Variable

PERCLOS

R= 0.86052156 R2= 0.74049735 Adjusted R2= 0.72679123
F( 15,284)=54.027  p<0.0000 Std. Error of estimate: 0.05 118

* Measures designated by a capital letter are defined in Table 19, Variable Group 1.
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Table 27: Summary of Results



  The R values resulting from correlation analyses using “clipped” output data were

notably higher than R values resulting from the use of non-clipped data. The average clipped

R value = 0.800 and the average non-clipped R value = 0.6 12 for nine validated algorithms.

The R values used for the averages are in Table 27.
.sification Matrices

’All APAR values are summarized in Table 27.
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DISCUSSION and CONCLUSIONS
.erpretation of Results

tability of alporithms when applied to new subject data R values and APAR values

in comparison of the results from the original and validation data sets (Table 27) suggest that,

in general, all nine algorithms maintained predictive propensity when applied to new data.

Additionally, R values using “clipped” data exhibited an even greater stability between

subjects. It should be noted that APAR values were calculated using “pure” algorithm output

data (“clipped” data were only used in R value calculations). In general, all algorithms were

able to predict appropriate classification of data in 78% to 85% of all cases.

Effect of higher order algorithms on accuracy of prediction. In all cases (variable

groups 1, 2, and 3) the inclusion of higher order terms in the multiple regression process did

not increase the predictive abilities of the resulting algorithms. In fact, when applied to new

data for validation, the algorithms which used linear only terms produced higher R values in

every case. Although small improvements in average APAR values for all errors occur

between first and second order algorithms applied to original data. there is no similar

improvement when applied to validation data.

Outliers. It was found that higher order algorithms may have a greater propensity to

produce outliers than linear algorithms, when the algorithms were applied to new (validation)

data. This propensity was probably a result of multiplying measures together that have

moderate statistical instability. Such measures would occasionally exhibit larger derivations,

causing extreme values in algorithm output.

Table 27 shows that clipping (limiting) algorithm output to a feasible range can

produce large increases in R values when higher order algorithms are applied to new data.

For example, in the case of 1 -LINCROSS, the value of R increased from 0.141 to 0.739 when

clipping was applied. The fact that clipping can produce substantial increases in R values

further supports the hypothesis that higher order models have a greater number and larger

outliers when applied to new data.
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Outliers have less of an effect on classification matrices. The reason for this is that

once the output of an algorithm exceeds a threshold, it does not matter whether it exceeds the

threshold by a small amount or a large amount. The classification selected is the same.

Nevertheless, outliers are a symptom of underlying instability. Thus, it could be

hypothesized that the measures devised for drowsy driver detection do not have sufficient

statistical reliability or stability to benefit from algorithms using higher-order terms

Conclusions

The results of this study suggest that the use of second order terms in driver

drowsiness detection algorithms does not result in detection accuracy improvement when the

algorithms are applied. This is a surprising result and it underscores the importance of testing

newly derived algorithms on a second set of data (that is, a validation set). Had this not been

done, it would have been concluded that higher order terms were capable of providing

detection accuracy improvements.

The results of this study also do not bode well for even more sophisticated detection

algorithms, such as pattern recognition or neural networks. Since these latter approaches are

actually sophisticated nonlinear optimization procedures, there is a possibility that they

would not provide improvement in detection accuracy (over less sophisticated techniques)

when they are applied to new (validation) data. At the very least, it can be stated, based on

the results of the present study, that all such sophisticated algorithms must be applied to a

second set of data for classification accuracy evaluation. Otherwise, when such algorithms

are applied in a field experiment, their detection capabilities may be found wanting and the

reasons may not be fully understood.

Finally, although not conclusively proven by the present study, the results do support

the hypothesis that higher-order algorithms produce more and larger outliers when applied to

new data than do linear algorithms.
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Chapter Seven

Part Two: Further Algorithm Refinement and Investigation - A Comparison

of R Values Obtained from the Application of Algorithms to

Original A/O Data, New A/O Data, and New Clipped A/O Data

(Work reported in this part of Chapter Seven has not appeared in previous

semiannual research reports. This work was carried out by Steven S. Wreggit

and Walter W. Wierwille. It is referred to as Wreggit and Wierwille, 1994a.)
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INTRODUCTION

The purpose of this follow-up study was to examine the possibility of potential

improvement in A/O based algorithm prediction accuracy by confining algorithm output

values to the minimum and maximum values of the observed data. However, it is important

to note that there were few outliers in the A/O algorithm output data.

Various A/O task algorithms were developed and validated in previous phases of this

study (Wreggit, Kirn, and Wierwille, 1993 and Wreggit, Kirn, and Wierwille, 1994) and it

was found that the R values in the validation phase (using new A/O data) were significantly

lower than the R values obtained in the development phase (using original A/O data). When

the results of the Fairbanks and Wierwille (1994) study became available, it was felt that the

significant decrease in R values from the development phase (using A/O data) to the

validation phase (using A/O data) could be due to the effects of prediction outliers.

Therefore, this supplemental study was undertaken.

The algorithm output values were limited to the minimum and maximum values of

the corresponding observed data. In other words, the outliers were “clipped” from the data

and set to a value equal to the largest and smallest observed data. Therefore, no outliers were

present when the subsequent correlation analyses were run. A comparison of R values

obtained from analyses of original data, new data, and “clipped” data were examined.
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METHOD

Data Analysis

Certain algorithm output data and the observed definitional measures that were

collected and calculated during the validation phase were used in this follow-up study. The

data employed in this study consisted of the algorithm output data from eight previously

developed A/O task algorithms and the four definitional measures of drowsiness.

Algorithm output data were limited to the minimum and maximum values of the

observed data so that no prediction outliers were present in the data set.

Correlations between the algorithm output (prediction data) and observed data were

run. The resulting R values were compared with the R values attained during analyses of the

new A/O data.
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RESULTS and CONCLUSIONS

Table 28 shows the R values that were obtained during the analyses of the new data

and new clipped data as well as the original data. The original data were not “clipped” as

were the new (validation) data. It can be seen in Table 28 that the R values resulting from the

new data and new clipped data are practically the same. The average R values for each data

type is as follows:

Original: Average R = 0.809

New: Average R = 0.606

New Clipped: Average R = 0.608

It can be concluded from the results of this follow-up study that the significant

decrease in A/O task performance based algorithm prediction strength was not due to

prediction outliers. Inspection of the data revealed that the number and magnitude of

prediction outliers was minimal. However, in the previous phase of this study in which

higher-order algorithm outputs were “clipped”, an increase in drowsiness prediction occurred.

It was found by Fairbanks and Wierwille (1994) that higher order algorithms may have a

greater propensity to produce outliers than linear algorithms. This propensity was probably a

result of multiplying measures together. Therefore, if linear algorithms are employed there is

no need to limit the upper and lower values of the prediction data.
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Table 28: R Values From Multiple Regression Analyses When Algorithms were Applied to
Original A/O Data, New A/O Data, and New Clipped* A/O Data.

Independent
Measures

Dependent Measures

AVEOBS EYEMEAS NEWDEF PERCLOS MASTER

I A/O Task
Measures Only

Algorithm I1a

(original)
0.761

(new)
0.595

(new clipped)
0.607

Algorithm I2a

(original)
0.768

(new)
0.570

(new clipped)
0.572

Algorithm I3a

(original)
0.660

(new)
0.422

(new clipped)
0.426

Algorithm  I4a

(original)
0.810

(new)
0.447

(new clipped)
0.437

Algorithm I5a

(original)
0.822

(new)
0.570

(new clipped)
0.574

J
A/O Task,
Steering, &
Accelerometer

------------- ------------- -------------

Algorithm J4a

(original)
0.836

(new)
0.599

(new clipped)
0.595

-------------

L

A/O Task,
LANDEV/VAR,
LNMNSQ,
LANEX, &
LNERRSQ

------------- ------------- -------------

Algorithm L3a

(original)
0.875

(new)
0.796

(new clipped)
0.595

-------------

M

A/O Task,
Steering,
Accelerometer,
LANDEV/VAR
LNMNSQ,
LANEX, &
LNERRSQ

------------- ------------- ------------- -------------

Algorithm
M3a

(original)
0.936

(new)
0.845

(new clipped)
0.849

* Clipped refers to data sets that contained no data greater or less than the maximum values
   of the observed data. Thus, any outliers that were present were clipped out of the data set.



Chapter Seven

Part Three: Further Algorithm Refinement and Investigation - An Investigation of

False Alarm Rates When Applying Detection Algorithms to Alert-Driver Segments

(Work reported in this part of Chapter Seven has not appeared in previous

semiannual reports. This work was carried out by Steven S. Wreggit and

Walter W. Wierwille. It is referred to as Wreggit and Wierwille, 1994b.)

184



INTRODUCTION

The false alarm rate of any warning system must be reasonably low to be practical

and marketable. Users of a warning system with a high false alarm rate would easily become

annoyed and may become habituated to frequent false signals, thus ignoring or disbelieving a

true warning of impending driver impairment.

This follow-up study addresses the concern of how well several typical algorithms

perform when drivers are alert. The algorithms that were employed in this follow-up study

were based on the definitional measures PERCLOS and AVEOBS. The goal of this study

was to determine the false alarm rate produced by several algorithms if observed alert data

were used exclusively.

It is important to note here that in the algorithm development and validation studies,

the false alarm rates may have been artificially high (compared with an actual on-the-road

situation) since the subject-drivers had been partially sleep deprived. Since very drowsy

subject-drivers were employed, the observed level of alertness would have, in many cases,

been very close to the “drowsy threshold” (the level of alertness determined previously that

indicates impairment).
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METHOD

Data Analysis

Certain algorithm output data and the observed definitional measures that were

collected and calculated during the validation phase were used in this follow-up study. The

data employed in this study consisted of the observed data from the definitional measures

PERCLOS and AVEOBS. The previously collected defmtional measures contained alert

data segments and drowsy data segments.

Since the purpose of this study was to examine the accuracy of previously developed

algorithms when applied to alert data only, the non-alert segments were deleted. Any

observed PERCLOS data greater than or equal to 0.030 were deleted. Any observed

AVEOBS data greater than or equal to 35.0 were deleted. It should be noted here that the

cut-off points employed in this study were different than the thresholds used in the algorithm

development and validation phases. The reason for this difference is that only “very alert”

segments were used in this false alarm rate examination.
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RESULTS and CONCLUSIONS

Table 29 shows three classification matrices and corresponding R values based on

alert data. It can be seen that the R values are quite low while the APARs are very high (in

some cases 1.0). The R values were expected to be low since the data were so tightly

grouped, thus the use of alert segments only did not allow for the detection algorithms to be

exercised to their fullest. In other words, the factor that may have contributed to the

reduction of drowsiness prediction R values was that a very small range of

drowsiness/alertness was observed,

It can be concluded from these results from the typical algorithms D1 a, D4a, and F4a

that low false alarm rates can be achieved when drowsy-driver detection algorithms are

applied during alert segments exclusively. This finding is important since drivers are alert a

majority of the time. The very low false alarm rates achieved in this follow-up study are a

significant finding because they represent false alarm rates that would be typical in an alert

driving situation. The false alarm rates during the validation study were slightly higher than

would be typical since the drivers/subjects were partially sleep deprived. Of course, false

alarm rates and classification accuracies in an actual application can be expected to differ

from those presented in this report, because the relative numbers of alert, questionable, and

drowsy epochs for actual driving are unknown.
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Table 29: Classification Matrices with Awake Data Only -- Demonstration of False Alarm
Rate .

Algorithm #D 1 a vs. AVEOBS

 Group % Correct Awake
Predicted

Questionable  Drowsy

Observed
Awake 98.97 96 - 1 -0
Questionable N/A 0 0 0
Drowsy N/A 0 0 0
Total 98.97 96 1 0

R Value = 0.157
Apparent Accuracy Rate (large misclassifications): 1 .OOOO
Apparent Accuracy Rate (all misclassifications): 0.9897

Algorithm #D4a vs. PERCLOS’

Predicted
Group % Correct Awake Questionable Drowsy
Awake 86.57 174  23 4

Observed Questionable N/A 0 0 0
Drowsy N/A 0 0 0
Total 86.57 174 23 4

R Value = 0.370
Apparent Accuracy Rate (large misclassifications): 0.980
Apparent Accuracy Rate (all misclassifications): 0.866

Algorithm #F4a vs. PERCLOS

Predicted
Group % Correct Awake Questionable drowsy
Awake 94.53 190 11 0

Observed Questionable N/A 0 0 0
drowsy. N/A 0 0 0
Total 94.53 190 11 0

R Value = 0.499
Apparent Accuracy Rate (large misclassifications): 1 .OOO
Apparent Accuracy Rate (all misclassifications): 0.945
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Chapter Eight

Summary of Findings and Recommendations
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INTRODUCTION

Because numerous investigations were carried out during this three-year study and a

great number of important results were obtained, it was felt beneficial to summarize the most

important findings in one place. Therefore, this chapter provides in brief form the major

findings of the research. Any research team undertaking further research on drowsy-driver

detection should examine this summary carefully since not doing so may result in substantial

lost effort.

It should be remembered that all of the results obtained are for research conducted in

a validated simulator using ordinary young drivers in a state of partial sleep deprivation.

These results are believed to be indicative of actual driving under similar on-the-road night

time conditions.

It must be pointed out that the automobile simulator located in the Vehicle Analysis

and Simulation Lab at Virginia Polytechnic Institute and State University does accurately

represent actual driving. In other words, this simulator handles and feels like an actual 

automobile. Furthermore, this simulator has been validated so that quantitative values

similar or equal to corresponding full-scale (field-test) results can be obtained. The results of

this research are believed to be accurate due to the realism and validated performance of the

automobile simulator used.
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MAIN FINDINGS

1. Appropriate operational definitions of drowsiness are important components when

developing drowsiness detection algorithms. Four definitions have been evolved and

have been used in this research. (A fifth measure, consisting of the average of the

standardized values of the other four was also used) They need not be obtainable in an

on-the-road setting.

2. No single measure currently obtainable in an actual automobile is capable of producing

sufficient accuracy to serve as a measure for drowsiness detection. However,

combinations of operational measures are capable of providing reasonably accurate

drowsiness detection. The measures showing the greatest promise as components in a

detection system are lane- and heading-related measures, steering-related measures, and

lateral accelerometer-related measures.

3. The algorithms capable of the greatest detection accuracy have the following general

characteristics:

a. They are composed of four to seven component measures.

b. They were derived from the above cited measure sets.

c.     Measures were initially obtained over one-minute intervals.

d. Averaging six consecutive one-minute-interval measures produces the highest

drowsiness prediction accuracy.

e. Algorithms were derived by means of multiple linear regression with thresholds

applied subsequently.

4. Discriminant analysis procedures did not produce better results than multiple regression .

followed by thresholding.

5. Prediction models that included heart-rate measures, in most cases, were not more

accurate at predicting drowsiness than models that did not include heart-rate measures.
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On the whole, it is not worth encumbering the driver with a plethysmograph to obtain

heart-rate measures for the slight improvement in the prediction of drowsiness.

6. A secondary task seems to provide an alternative method for the detection of driver

drowsiness, however, a small loss of accuracy was observed when secondary task based

algorithms were applied to the new set of data in the validation phase.

7. The relative predictive strengths of the five definitional measures of drowsiness used in

this study varied somewhat. In general, the most accurate dependent measures were

MASTER and PERCLOS, followed in decreasing order by AVEOBS, EYEMEAS, and

NEWDEF.

8. Experienced raters were able to produce a good operational measure of drowsiness.

This was accomplished by viewing videotaped images of driver-subjects and rating

each one-minute segment for level of drowsiness. Three raters were employed and

rated independently of one another. The scores from all raters were averaged for each

one-minute segment to create the definitional measure of drowsiness called AVEOBS.

9. The accuracy of the algorithms that classified levels of drowsiness most accurately are

characterized by the following:

a. The average apparent accuracy rate (APAR) for all errors when developed

algorithms were applied to a new set of data and when dual thresholds were used

was approximately 0.829. (This average was calculated using seven values in

Table 16).

b. The average APAR for large errors only when developed algorithms were

applied to a new data set and when dual thresholds were used was approximately

0.971 (This average was calculated using seven values in Table 16).

10. The first two minutes of each data set should not be used for data analysis and should

be deleted. This procedure was found to be necessary since many drivers had a

“settling in” time of approximately two minutes. In other words, once the driver-

subjects were placed in the simulator, even after they had experienced a lengthy
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practice run (approximately 10- 15 minutes), it was observed that they still needed

around two minutes to begin driving normally. In an on-the-road setting drivers would

usually use this time for reaching speed and settling into the driving task.

11. Baselining is desirable when developing the data sets for analysis. The process of

baselining was used to account for individual differences in physiological

characteristics, driving ability, and capability to perform certain tasks. The data used

for the baselining procedure were the initial ten minutes of data (after the first two

minutes were deleted). These data are averaged and then subtracted from all

subsequent one-minute segments for each driver’s data set. Therefore, baselining was

carried out so that data relative to the subject’s initial data values could be obtained.

12. When typical algorithms based on driving performance were applied to a new data set

using different subjects driving under similar but not identical conditions, no loss in.

detection accuracy resulted. Both R values and classification matrix accuracies

maintained their values.

13. The use of twelve representative subjects was sufficient to characterize algorithms for

general use. Care must be taken to ensure that bouts of drowsiness do in fact occur in

several of the drivers. Otherwise, algorithms obtained will not be properly “trained” for

drowsiness detection.

14. There was a degradation in R values for previously developed algorithms that included

A/O (secondary) task measures, when the algorithms were applied to new data. The

drop in value averaged 0.2. However, classification matrices did not exhibit a

correspondingly large decrease in accuracy. Instead, their reduction in accuracy was

small.

15. The reduction in R values when NO task algorithms were applied to a new set of data

was probably a result of using only four subjects to develop the algorithms, or possibly

a result of the limited number of bouts of drowsiness in the new (validation) data.
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16. R values for validation results may underestimate the capabilities of algorithms to

classify correctly, especially when a small subject sample is used to develop the

algorithms.

17. The dullest of driving conditions showed signs of inducing drowsiness. The

combination of barren highway, engaged cruise control, no traffic, and the absence of a

secondary task was found to induce drowsiness most readily and with greatest

frequency.

18. If drivers who are being monitored by a drowsiness-detection device are in fact alert,

the false alarm rates as presented in Chapters 4 and 5 are generally larger than will

actually be encountered. The false alarm rates generated in these chapters are for

drivers who are partially sleep deprived. However, a follow-up study was conducted
.

that demonstrated that if the developed detection algorithms were applied to only alert

driving segments, a lower false alarm rate would result (see Chapter Seven: Part

Three). It should be noted here, however, that “real-world” accuracy rates are likely to

differ from the accuracy rates of the main analyses and follow-up study because the

ratio of alert, questionable, and drowsy epochs of normal drivers is unknown.

19. Higher order detection algorithms (second order in particular) do not provide improved

accuracy when applied to a new data set.

20. Longitudinal measures do not provide any appreciable improvement in detection

accuracy. Driver speed variation does not provide independent information not already

available in other measures.

21. Classification matrices based on certain algorithms resulted in high correct

classification rates (APARs) even though relatively low R values were obtained from

multiple regression analyses. This occurred when A/O task data were used for

algorithm development. During these segments the driver-subjects were more alert.

The good results of the classification matrices suggest that if alert drivers make up the

subject pool a deflation in R values will be seen. Thus, R values should not be relied
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22.

upon solely as an indication of the accuracy of detection algorithm. Further steps must

be taken in the investigation of algorithm accuracy by way of classification matrix

analyses.

When developing the algorithms by linear regression methods, extreme care must be

taken with problems of colinearity.. The best procedure found to deal with this problem

was to examine statistical output for nearly equal but opposite B coefficients and

eliminate the measure that contributed least to the prediction accuracy of the algorithm

being developed. Failure to heed this warning will result in prediction algorithms that

appear to possess high predictive accuracy but subsequently show a large drop in

accuracy when applied to a new set of data.
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RECOMMENDATIONS

Efforts are currently being undertaken in a project extension to develop and

implement a drowsy-driver detection system. The first phase focuses on the effectiveness of

various types of on-board warning systems. The purpose of the warning system should be to

alert the driver that he or she is becoming drowsy. The system would also be used as a

means of arousing the driver.

An effective warning must get the attention of a driver even if he or she is drowsy.

However, warnings for a drowsy-driver detection device must not be so intrusive and

jarring that they startle the driver. Another consideration pertaining to the intrusiveness

of the warning is the degree of driver annoyance. However, the warning must not be so

conservative that it fails to result in the desired effect of alerting or arousing a driver.

The research to be conducted will involve the use of performance algorithms to

detect an increase in subject-driver drowsiness. The algorithms that will be used are

those developed by Wreggit, Kim, and Wierwille (1993). Once the detection algorithms

have classified a subject-driver as drowsy, a warning will inform the driver that he or she

is exhibiting signs of impaired driver performance. A “full alarm” will activate if the

driver does not manually reset the system.

One of the objectives of the research will be to determine the optimal tone and/or

voice warning to be used for the initial warning. The option to reset the system will give

the driver the opportunity to avoid exposure to the “full alarm”. The action of resetting

the warning may also interrupt a driver’s increasing drowsiness for at least a short period

of time. When the driver depresses the reset button the initial warning system will be

disengaged for approximately five minutes.

Another objective of the research is to determine the optimal full-alarm signal to be

used. Auditory displays such as various modulated tones and rumble strip-like sounds may

be investigated along with steering-column vibration and driver’s seat-vibration. The alarm

will continue to be displayed with increasing intensity until it is manually deactivated by the
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driver. Once the driver has deactivated the alarm the detection algorithms will be disengaged

for approximately five minutes. The driver will then be given the option of selecting

drowsiness countermeasures. Once the multi-stage warning and alerting system described

above has been developed in the automobile simulator there is still a need for full-scale

implementation and testing of the in-car driver-drowsiness detection and alerting system.
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Appendix A

Regression Summaries and Classification Matrices for Selected Algorithms

(Numbering of algorithms is the same as in previous technical reports)
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Regression Summary for Dependent Variable: AVEOBS
R = 0.74732 R2= 0.55849 Adjusted R2 = 0.54791
F(7,292)= 52.768 p < 0.0000 Std. Error of estimate: 16.765

St. Err. St. Err.
BETA of BETA B of B

Intercept
t(292)
18.200

p-level
0.000 29.060127 1.597

ACCVAR -0.155 0.068 -1.738049 0.763 -2.278 0.023
INTACDEV -0.207 0.058 -33.279385 9.389 -3.544 0.000 
ACEXEED 0.117 0.050 290.205383 124.826 2.325 0.021
STVELV -0.238 0.089 -0.197639 0.074 -2.670 0.008
LGREV 0.561 0.078 14.484322 2.010 7.207 0.000
MDREV 0.537 0.065 3.120561 0 778 8.264 0.000 
THRSHLDD I I I I  0.213 0.044  50.180883 10.407  4.822 0.000

Predicted
Group % Correct Awake Questionable Drowsy

Original Awake 93.41 156 6 5
Observed Questionable 18.87 36 10 7

Drowsy 50.00 19 21 40
Total 68.67 211 37 52

AVEOBS (R Value = 0.747)
Apparent Accuracy Rate (large misclassifications): 0.920
Apparent Accuracy Rate (all misclassifications): 0.687

Classification Matrix Generated From Multiple Regression Analysis of Original AVEOBS
Data Resulting in Algorithm Dla. (Independent variables employed included Steering and
Accelerometer.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 96.43 189              5                 2
Observed Questionable 12.20 29 5 7

Drowsy 62.75 14 5 32
Total 78.47 232 15 41

AVEOBS (R Value = 0.727)
.Apparent Accuracy Rate (large misclassifications): 0.944

Apparent Accuracy Rate (all misclassifications): 0.785

Algorithm Dla Applied to New Data and Compared with New Observed AVEOBS Data

Figure Al : Regression Summary and Classification Matrices Showing Accuracy of
Algorithm D 1 a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variable: PERCLOS
R = 0.78910 R 2 = 0.62268 Adjusted R2 = 0.61626
F(5,294) = 97.038 p < 0.0000 Std. Error of estimate: 0.06065

Predicted

Original
Observed

PERCLOS (R Value = 0.789)
Apparent Accuracy Rate (large misclassifications): 0.987
Apparent Accuracy Rate (all misclassifications): 0.757

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm D4a.  (Independent variables employed included Steering and
Accelerometer.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 79.32 188 40 9
Observed Questionable 30.00 8 6 6

Drowsy 90.32 1 ‘2 28
Total 77.08 197 48 43

PERCLOS (R Value = 0.800)
Apparent Accuracy Rate (large misclassifications): 0.965
Apparent Accuracy Rate (all misclassifications): 0.771

Algorithm D4a Applied to New Data and Compared with New Observed PERCLOS Data

Figure A2: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm D4a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variable: MASTER
R = 0.80116 R2‘= 0.64185 Adjusted R2 = 0.63452
F(6,293)  = 87.5 18 p < 0.0000 Std. Error of estimate: 2.1481

NMRHOLD -0.314 0.054 -0.196918 0.034 -5.821 0.000
THRSHLD 0.357 0.047 11.974089 1.579 7.582 0.000

Original
Observed

MASTER (R

Predicted
Group % Correct Awake Questionable Drowsy
Awake 93.53 188 10 3
Questionable 33.33 14 14 14
Drowsy 52.63 3 . 24 30
Total 77.33 205 48 47

Value = 0.801)
Apparent Accuracy Rate (large misclassifications): 0.980
Apparent Accuracy Rate (all misclassifications): 0.773

Classification Matrix Generated From Multiple Regression Analysis of Original MASTER
Data Resulting in Algorithm D5a.  (Independent variables employed included Steering and
Accelerometer.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 93.52 202 10 4- -
Observed Questionable 25.93 16 7 4

Drowsy 80.00 4 5 36
Total 85.07 222 22 44

MASTER (R Value = 0.837)
Apparent Accuracy Rate (large misclassifications): 0.972
Apparent Accuracy Rate (all misclassifications): 0.851

Algorithm D5a Applied to New Data and Compared with New Observed MASTER Data

Figure A3 : Regression Summary and Classification Matrices Showing Accuracy of
Algorithm D5a When Applied to Original Data and New Data.
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Regression Summary for Dependknt Variable: PERCLOS
R = 0.84691010 R2 = 0.71725672 Adjusted R2 = 0.71244816
F(5,294) = 149.16 p < 0.0000 Std. Error of estimate: 0.05250

THRSHLD  0.320 0.043  0.295479  0.040 7.463 0.000

Note: classification matrices not developed for this algorithm.

Figure A4: Regression Summary for Algorithm E4a.
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Regression Summary for Dependent Variable: AVEOBS
R = 0.82577937 R2 = 0.68191157 Adjusted R2 = 0.67428617

Note: classification matrices not developed for this algorithm.

Figure A5 : Regression Summary for Algorithm Fl a.
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Regression Summary for Dependent Variable: EYEMEAS
R = 0.83700489’ R2 = 0.70057719 Adjusted R2 = 0.69339924
F(7,292) = 97.601 p < 0.0000 Std. Error of estimate: 768.40

Predicted
Group % Correct Awake Questionable Drowsy

Original Awake 90.10 182 12 8
Observed Questionable 10.00 9 2  9

Drowsy 64.10 11 17 50
Total 78.00 202 31 67

EYEMEAS (R Value = 0.837)
Apparent Accuracy Rate (large misclassifications): 0.963
Apparent Accuracy Rate (all misclassifications): 0.780

Classification Matrix Generated From Multiple Regression Analysis of Original
EYEMEAS Data Resulting in Algorithm F2a. (Independent variables employed included
Steering, Accelerometer, LANDEVNAR, LNMNSQ. LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 95.51 134 7 4
Observed Questionable 12.50 0 1 7

Drowsy 71.43 3 7 25
Total 90.28 237 15 36

EYEMEAS (R Value = 0.838)
Apparent Accuracy Rate (large misclassifications): 0.976
Apparent Accuracy Rate (all misclassifications): 0.903

Algorithm F2a Applied to New Data and Compared with New Observed EYEMEAS Data

Figure A6: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F2a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variable: NEWDEF
R = 0.73127598‘ R2 = 0.53476456 Adjusted R2 = 0.52845628
F(4,295) = 84.772 p < 0.0000 Std. Error of estimate: 1.1789

Predicted
Group % Correct Awake Questionable Drowsy

Original Awake 83.42 161 26 6
Observed Questionable 35.29 25 18 8

Drowsy 62.50 8 13 34
Total 71.33 194 57 49

NEWDEF (R Value = 0.73 1)
Apparent Accuracy Rate (large misclassifications): 0.953
Apparent Accuracy Rate (all misclassifications): 0.713

Classification Matrix Generated From Multiple Regression Analysis of Original NEWDEF
Data Resulting in Algorithm F3a. (Independent variables employed included Steering,
Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake Questionable Drowsy

New            Awake            93.36             197              13                1
Observed Questionable 26.19 23 11 8

Drowsy 85.71 1 4 30
Total               82.64             221             28               39

NEWDEF (R Value = 0.8 19)
Apparent Accuracy Rate (large misclassifications): 0.993
Apparent Accuracy Rate (all misclassifications): 0.826

Algorithm F3a Applied to New Data and Compared with New Observed NEWDEF Data

Figure A7: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F3a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variable: PERCLOS
R = 0.87159526’ R2 = 0.75967830 Adjusted R2 = 0.75475703
F(6,293) = 154.37 p < 0.0000 Std. Error of estimate: 0.04849

N M R H O L D  - 0 . 2 0 4 0.045 -0.004 0.000785 -4.494 0.000
THRSHLD 0.250 0.041 0.23 1 0.037904 6.098 0.000

Predicted
Group % Correct Awake Questionable Drowsy

Original Awake 89.76 184 18 3
Observed Questionable 47.73 7 21 16

Drowsy 62.75 3 16 32
Total 79.00 194 55 51

PERCLOS (R Value = 0.872)
Apparent Accuracy Rate (large misclassifications): 0.980
Apparent Accuracy Rate (all misclassifications): 0.790

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm F4a. (Independent variables employed included Steering,
Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 89.03 211 22 4
Observed Questionable 15.00 12 3 5

Drowsy 80.65 3 3 25
Total 82.99 226 28 34

PERCLOS (R Value = 0.862)
Apparent Accuracy Rate (large misclassifications): 0.976
Apparent Accuracy Rate (all misclassifications): 0.830

Algorithm F4a Applied to ‘New Data and Compared with New Observed PERCLOS Data

Figure A8: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F4a When Applied to Original Data and New Data.
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Regression Summary for Dkpendent Variable: MASTER
R = 0.88641410 R2 = 0.78572996 Adjusted R2 = 0.77908020

  of BETA  B t(290) I n-level

-0.259953  0.075  -3.466  0.001

 5.049306 1.719 2.938 6.004
1  -0.082919 0.017 -4.886 0.000

0.013713 0.006 2.205 0.028
0.133662 0.040 3.307 0.001
-0.062747 0.029 -2.189 0.029
5.636318 1.315 4.287 0.000

Original
Observed

MASTER (R

Classification Matrix Generated From Multiple Regression Analysis of Original
MASTER Data Resulting in Algorithm F5a. (Independent variables employed included
Steering, Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake Questionable Drowsy
Awake   94.53 190 9 2
Questionable  45.24 9 19 14
Drowsy   71.93  3 13 41
Total     83.33

Value = 0.886)
Apparent Accuracy Rate (large misclassifications): 0.983
Apparent Accuracy Rate (all misclassifications): 0.833

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 96.76 209 5 2 
Observed Questionable 18.52 22 5 0

Drowsy 62.22 6        11    28
Total 84.03 237 21 30

MASTER (R Value = 0.885)
Apparent Accuracy Rate (large misclassifications):       0.972
Apparent Accuracy Rate (all misclassifications):            0.840

Algorithm F5a Applied to New Data and Compared with New Observed MASTER
Data

Figure A9: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F5a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variable: PERCLOS
R= 0.80983889 R2 = 0.65583902 Adjusted R2 = 0.64508399
F(3,96)  = 60.980 p < 0.00000 Std.Error of estimate: 0.05334

Note: Classification matrix not developed for original data for this algorithm.

Predicted

New
Observed

PERCLOS (R Value = 0.447)
Apparent Accuracy Rate (large misclassifications): 0.93 1
Apparent Accuracy Rate (all misclassifications): 0.847

Algorithm 14a Applied to New Data and Compared with New Observed PERCLOS Data

Figure Al 0: Regression Summary and Classification Matrix Showing Accuracy of
Algorithm 14a When Applied to New Data.
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Regression Summary for Dependent Variable: PERCLOS
R = 0.83585799 ‘R2 = 0.69865857 Adjusted R2 = 0.68262977
F(5,94) = 43.588 p < 0.00000 Std.Error of estimate: 0.05044

Predicted
Group % Correct Awake Questionable Drowsy

Original Awake 94.29 66 3 1
Observed Questionable 43.75 2 7 7

Drowsy 42.86 2 6 6
Total 79.00 70 16 14

PERCLOS (R Value = 0.836)
Apparent Accuracy Rate (large misclassifications): 0.970
Apparent Accuracy Rate (all misclassifications): 0.790

Classification Matrix Generated From Multiple Regression Analysis of Original
PERCLOS Data Resulting in Algorithm J4a.  (Independent variables employed
included A/O Task, Steering, and Accelerometer.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 93.33 112 6 2
Observed Questionable 27.27 6 3 2

Drowsy 38.46 4 4 5
Total 83.33 122 13 9

PERCLOS (R Value = 0.599)
Apparent Accuracy Rate (large misclassifications): 0.958
Apparent Accuracy Rate (all misclassifications): 0.833

Algorithm J4a Applied to New Data and Compared with New Observed PERCLOS Data

Figure A11: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm J4a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variable: PERCLOS
R= 0.874877 17 R2=4 0.76541006 Adjusted R2 = 0.75027522
F(6,93) = 50.573 p<< 0.00000 Std.Error of estimate: 0.04474

Note: Classification matrix not developed for original data for this algorithm.

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 94.17 113 5 2
Observed Questionable 54.55 3 6 2

Drowsy 46.15 1 6 6
Total 86.81 117 17 10

PERCLOS (R Value = 0.796)
Apparent Accuracy Rate (large misclassifications): 0.979
Apparent Accuracy Rate (all misclassifications): 0.868

Algorithm L3a Applied to New Data and Compared with New Observed PERCLOS

Figure A12: Regression Summary and Classification Matrix Showing Accuracy of,
.Algorithm L3a When Applied to New Data.
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Regression Summary for Dependent Variable: MASTER
R = 0.93610768 R2 = 0.87629758 Adjusted R2 = 0.86542265
F(8,91) = 80.580 p < 0.00000 Std.Error of estimate: 1.3 177

St. Err. St. Err.
BETA of BETA  B of B t(91) p-level

Intercept -3.437887 0.232 -14.806 0.000
ACCDEV -0.185 0.043 -1.137986 0.264 -4.3 13 0.000
LANDEV 0.847 0.139 2.583602 0.425 6.077 0.000
 LANEX 0.368 0.096  9.328965  2.430   3.840   0.000

NMNR 0.192 0.074  3.458096  1.332 2.597 0.

Predicted
Group % Correct Awake Questionable Drowsy

Original Awake 95.59 65 3 0
Observed Questionable 50.00 3 7 4

Drowsy 72.22 0 5 13
Total 85.00 68 15 17

MASTER (R Value = 0.936)
Apparent Accuracy Rate (large misclassifications): 1 .ooo
Apparent Accuracy Rate (all misclassifications): 0.850

Classification Matrix Generated From Multiple Regression Analysis of Original
MASTER Data Resulting in Algorithm M3a.  (Independent variables employed included
A/O Task, Steering, Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake Questionable Drowsy

New Awake 100.00 108 0 0
Observed Questionable 0.00 13 0 0

Drowsy 30.43 8 8 7
Total 79.86 129 8 7

MASTER (R Value = 0.845)
Apparent Accuracy Rate (large misclassifications): 0.944
Apparent Accuracy Rate (all misclassifications): 0.799

Algorithm M3a Applied to New Data and Compared with New Observed MASTER Data

Figure Al 3 : Regression Summary and Classification Matrices Showing Accuracy of
Algorithm M3a When Applied to Original Data and New Data.
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